K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x\left(3x+5\right)-6x-10=0\)

=>\(x\left(3x+5\right)-2\left(3x+5\right)=0\)

=>(3x+5)(x-2)=0

=>\(\left[{}\begin{matrix}3x+5=0\\x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=2\end{matrix}\right.\)

2 tháng 7

`x(3x+5)-6x-10=0`

`<=>x(3x+5)-2(3x+5)=0`

`<=>(3x+5)(x-2)=0`

TH1: `3x+5=0<=>3x=-5<=>x=-5/3`

TH2: `x-2=0<=>x=2`

22 tháng 4 2016

ai làm có thưởng 2điem

30 tháng 4 2020

tks ạ

6 tháng 10 2019

Park Ji Woo ghi rõ đề ra bn ơi

6 tháng 10 2019

GIẢI CÁC PHƯƠNG TRÌNH NHƯ KIỂU TÌM X Á

a: \(\Leftrightarrow2x\left(x^2-6x+5\right)+7x\left(x^2-3x+5\right)=2\left(x^2-3x+5\right)\left(x^2-6x+5\right)\)

=>\(2x^3-12x^2+10x+7x^3-21x^2+35x=2\left[\left(x^2+5\right)^2-9x\left(x^2+5\right)+18x^2\right]\)

\(\Leftrightarrow9x^3-33x^2+45x=2\left[x^4+10x^2+25-9x^3-45x+18x^2\right]\)

=>9x^3-33x^2+45x=2x^4-18x^3+56x^2-90x+50

=>2x^4-27x^3+89x^2-135x+50=0

=>\(x\in\left\{0.52;9.55\right\}\)

b: \(\dfrac{x^2+4}{x^2}+\dfrac{3x-6}{x-2}=0\)

=>1+4/x^2+3=0

=>4/x^2+4=0

=>4/x^2=-4

=>x^2=-1(loại)

27 tháng 6 2023

a) \(\sqrt{1-4x+4x^2}=5\) 

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b) \(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

\(\Leftrightarrow x+3=3x-1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

27 tháng 6 2023

\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)

\(TH_1:x\le\dfrac{1}{2}\)

\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)

\(TH_2:x\ge\dfrac{1}{2}\)

\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{-2;3\right\}\)

\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)

\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)

\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)

Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)

21 tháng 8 2018

P=\(\frac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\)

P=\(\frac{\sqrt{10+2\sqrt{\left(5+3x\right)\left(5-3x\right)}}}{x}\)

P=\(\frac{\sqrt{10+10-a^2}}{x}\)(Vì a2=\(\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2\)=10-2\(\sqrt{\left(5+3x\right)\left(5-3x\right)}\))

21 tháng 8 2018

\(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x+5-3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)

\(\Leftrightarrow10-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)

\(\Leftrightarrow2\sqrt{\left(5+3x\right)\left(5-3x\right)}=10-a^2\)

Thế vào P ta được:

\(P=\frac{\sqrt{10+2\sqrt{25-9x^2}}}{x}=\frac{\sqrt{10+2\sqrt{\left(5-3x\right)\left(5+3x\right)}}}{x}\)

                                                     \(=\frac{\sqrt{10+10-a^2}}{x}\)

                                                       \(=\frac{\sqrt{20-a^2}}{x}\)

P/s: nếu em có sai sót, xin bỏ qua

21 tháng 8 2018

\(\sqrt{5+3x}-\sqrt{5-3x}=a\left(x\le\dfrac{5}{3}\right)\)

\(\Rightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Rightarrow5+3x+5-3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)

\(\Rightarrow10-2\sqrt{25-9x^2}=a^2\)

\(\Rightarrow-2\sqrt{25-9x^2}=a^2-10\)

\(\Rightarrow2\sqrt{25-9x^2}=10-a^2\)

\(\Rightarrow10+2\sqrt{25-9x^2}=20-a^2\)

\(\Rightarrow P=\dfrac{\sqrt{10+2\sqrt{25-9x^2}}}{x}=\dfrac{\sqrt{20-a^2}}{x}\)

21 tháng 8 2018

\(\sqrt{5+3x}-\sqrt{5-3x}=a\\ \Rightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\\ \Rightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\\ \Rightarrow2\sqrt{25-9x^2}=10-a^2\\ \Rightarrow4\left(25-9x^2\right)=\left(10-a^2\right)^2\\ \Rightarrow100-36x^2=100-20a^2+a^4\\ \Rightarrow36x^2=20a^2-a^4\\ \Rightarrow x^2=\dfrac{20a^2-a^4}{36}\\ \Rightarrow x=\dfrac{\sqrt{a^2\left(20-a^2\right)}}{6}\)

\(\Rightarrow P=\dfrac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\\ =\dfrac{\sqrt{10+10-a^2}}{\dfrac{\sqrt{a^2\left(20-a^2\right)}}{6}}=6\sqrt{\dfrac{20-a^2}{a^2\left(20-a^2\right)}}=\dfrac{6}{\left|a\right|}\)

30 tháng 4 2021

a. 2x\(^2\)-8=0

2x\(^2\)=8

x\(^2\)=4

x=2

b.3x\(^3\)-5x=0

x(3x\(^2\)-5)=0

\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)

 

1 tháng 5 2021

c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)

đặt t=x\(^2\) (t>0)

ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)

thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm

t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4

khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1

khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2

vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2

d)3x\(^2\)+6x-9=0

thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm

x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)

e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)  (ĐK: x#5; x#2 )

\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)

⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0

⇔-7x\(^2\) - 6x + 46=0

Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0

\(\sqrt{\Delta'}=\sqrt{62}\)

vậy pt có 2 nghiệm phân biệt

x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)

x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)

vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......

câu g làm tương tự câu c