\(x^{3n+1}+x^{3m+2}+1\).Phân tích đa thức trên thành nhân tử

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Bài 1:

\(x^5+x+1\)

\(=x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)

\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

Bài 2:

\(\frac{2n^2-3n+1}{2n+1}=\frac{n\left(2n+1\right)-4n+1}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{4n+1}{2n+1}=n-\frac{4n+1}{2n+1}\in Z\)

\(\Rightarrow4n+1⋮2n+1\)

\(\Rightarrow\frac{4n+1}{2n+1}=\frac{2\left(2n+1\right)-1}{2n+1}=\frac{2\left(2n+1\right)}{2n+1}-\frac{1}{2n+1}=2-\frac{1}{2n+1}\in Z\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow2n\in\left\{0;-2\right\}\)

\(\Rightarrow n\in\left\{0;-1\right\}\)

 

23 tháng 3 2017

\(3m^2-2m-1\)

\(=3m^2-3m+m-1\)

\(=3m\left(m-1\right)+\left(m-1\right)\)

\(=\left(m-1\right)\left(3m+1\right)\)

23 tháng 3 2017

\(3m^2-2m-1\)

\(=3m^2+m-3m-1\)

\(=\left(3m^2+m\right)-\left(3m+1\right)\)

\(=m\left(3m+1\right)-\left(3m+1\right)\)

\(=\left(m-1\right)\left(3m+1\right)\)

2 tháng 11 2016

<=>x4-x+x+x+1= x (x-1) (x2+x+1)  +  (x2+x+1)  =   (x2+x+1)(x2-x+1)

chắc có lẽ đúng đó

30 tháng 6 2017

mình chỉ phân tích được đa thức này thôi!

\(x^4+x^2+1\)

\(=x^4+2x^2-x^2+1\)

\(=\left(x^4+2x^2+1\right)-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

cái này ko phân tích dc nha!!!

20 tháng 10 2017

\(x^4+x^2+1\)

\(=x^4+2x^2+1+x^2-2x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2+1-x\right).\left(x^2+1+x\right)\)

20 tháng 10 2017

Vì phương trình x4+x2+1=0 vô nghiệm nên không thể phân tích thành nhân tử

22 tháng 8 2020

Ta có : x4 + x2 + 1

= x4 + x2 + x2 + 1 - x2

= (x2 + 1)2 - x2

= (x2 + 1 - x)(x2 + 1 + x)

22 tháng 8 2020

x4 + x2 + 1

= x4 + 2x2 + 1 - x2

= ( x2 + 1 )2 - x2

= ( x2 - x + 1 )( x2 + x + 1 )

28 tháng 12 2019

\(x^7+x^2+1\)

\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

28 tháng 12 2019

a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

27 tháng 2 2018

a(x2 + 1) - x(a2 + 1)

= ax2 + a - a2x - x

= (ax2 - a2x) + (a - x)

= -ax(a - x) + (a - x)

= (a - x)(-ax + 1)

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)

Ủng hộ nha ^ _ ^

2 tháng 8 2016

\(x^4+x^3+x^2-1\)

\(=x^2\left(x^2-1\right)+x^2-1\)

\(=\left(x^2+1\right)\left(x^2-1\right)\)