K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2021

\(x^3+3x^2+3x=-\dfrac{7}{8}\\ x^3+3x^2+3x+1=1-\dfrac{7}{8}\\ \left(x+1\right)^3=\dfrac{1}{8}\\ x+1=\dfrac{1}{2}\\ x=-\dfrac{1}{2}\)

Ta có: \(x^3+3x^2+3x=\dfrac{-7}{8}\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+1\right)^3=\left(\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow x+1=\dfrac{1}{2}\)

hay \(x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

NV
23 tháng 7 2021

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Tại \(x=101\)

\(\Rightarrow\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)

23 tháng 7 2021

\(x^3-3x^2+3x-1=x^3-1-3x^2+3x\)

\(=\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1-x+1\right)\)

\(=\left(x-1\right)\left(x^2+2\right)\)Thay x = 101 ta được 

\(=\left(101-1\right)\left(101^2+2\right)=100.10203=1020300\)

7 tháng 10 2021

\(\Leftrightarrow\left(x+1\right)^3=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

7 tháng 10 2021

<=>x³ +3x²1 +3x1²+1²=0

<=>(x+1)²=0

<=>x+1=0

<=>x=-1

25 tháng 11 2021

đề là gì đấy nhỉ

25 tháng 11 2021

\(\dfrac{3x^2-3xy}{3\left(y-x\right)^2}=\dfrac{3x\left(x-y\right)}{3\left(x-y\right)^2}=\dfrac{x}{x-y}\Rightarrow?=x\)

8 tháng 9 2021

\(=\left(x-1\right)^3\)

8 tháng 9 2021

(X-1)^3

19 tháng 10 2021

\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)

19 tháng 10 2021

a) \(\left(x-2\right)^2\)

b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)

c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)

d) \(\left(x+1\right)^3\)

e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)

f) \(\left(x+3\right)^2\)

g) \(-\left(x-5\right)^2\)

h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

30 tháng 10 2021

\(x^3+3x^2+3x+1=\left(x+1\right)^3\)

30 tháng 10 2021

Cảm ơi bạn

28 tháng 8 2021

\(x^3+3x^2+3x=0\\ \Leftrightarrow x\left(x^2+3x+3\right)=0\\ \Leftrightarrow x=0\left(x^2+3x+3=x^2+3x+\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\right)\)

28 tháng 8 2021

\(x^3+3x^2+3x=0\)

\(\Rightarrow x\left(x^2+3x+3\right)=0\)

Mà: \(x^2+3x+3>0\)

=> x = 0

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)