K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Ta có :\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)

=> \(\left(\frac{x+4}{2018}+1\right)+\left(\frac{x+3}{2019}+1\right)=\left(\frac{x+2}{2020}+1\right)+\left(\frac{x+1}{2021}+1\right)\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)

=> \(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\)

=> x + 2022 = 0

=> x = -2022

Vậy x = -2022

1 tháng 10 2020

\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)  

\(\frac{x+4}{2018}+1+\frac{x+3}{2019}+1=\frac{x+2}{2020}+1+\frac{x+1}{2021}+1\) 

\(\frac{x+4}{2018}+\frac{2018}{2018}+\frac{x+3}{2019}+\frac{2019}{2019}=\frac{x+2}{2020}+\frac{2020}{2020}+\frac{x+1}{2021}+\frac{2021}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)   

\(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)   

\(x+2022=0\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)   

\(x=0-2022\) 

\(x=-2022\)

7 tháng 10 2020

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{2020}{2021}\)    

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2020}{2021}\)   

\\(1-\frac{1}{x+1}=\frac{2020}{2021}\)   

\(\frac{1}{x+1}=1-\frac{2020}{2021}\)   

\(\frac{1}{x+1}=\frac{1}{2021}\)   

\(\Rightarrow x+1=2021\)   

\(x=2021-1\)   

\(x=2020\)

7 tháng 10 2020

đk: \(x\ne\left\{0;-1\right\}\)

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2020}{2021}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2020}{2021}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2020}{2021}\)

\(\Leftrightarrow\frac{x}{x+1}=\frac{2020}{2021}\)

\(\Leftrightarrow2021x=2020x+2020\)

\(\Rightarrow x=2020\)

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

10 tháng 5 2022

undefinedundefined

1 tháng 1 2018

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}=\dfrac{x-2}{2019}+\dfrac{x-1}{2018}\)

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}-\dfrac{x-2}{2019}-\dfrac{x-1}{2018}=0\)

\(\left(1+\dfrac{x-4}{2021}\right)+\left(1+\dfrac{x-3}{2020}\right)-\left(1+\dfrac{x-2}{2019}\right)-\left(1+\dfrac{x-1}{2018}\right)=0\)\(\dfrac{x+2017}{2021}+\dfrac{x+2017}{2020}-\dfrac{x+2017}{2019}-\dfrac{x+2017}{2018}=0\)

\(\left(x+2017\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\right)=0\)

⇔ x + 2017 = 0

⇔ x = -2017

Vậy x = -2017

26 tháng 6 2021

lol

5 tháng 1 2023

\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)

5 tháng 1 2023

Tham khảo câu trả lời:

a)

P(x) + O(x) = \(\left(x^3+2x^2-3x+2020\right)+\left(2x^3-3x^2+4x+2021\right)\)

P(x) + O(x) = \(3x^3-x^2+x+4041\)

b)

P(x) - O(x) = \(x^3+2x^2-3x+2020-2x^3+3x^2-4x-2021\)

P(x) - O(x) = \(-x^3+5x^2-7x-1\)