K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Câu bc mình ghi nhầm nên dừng làm

5 tháng 8 2017

kết bạn với mình đi

25 tháng 7 2021

a, \(=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)

b, \(\left(x+y-x+y\right)[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2]\)

\(=2y[x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2]\)

\(=2y\left(3x^2+y^2\right)\)

c,\(=3\left(x+1\right)^2\left(x^2-x+1\right)y^2\)

25 tháng 7 2021

câu a, b áp dụng hằng đẳng thức rồi làm nha 

c) 3x4y+ 3x3y+ 3xy+ 3y2

= ( 3x4y+ 3x3y) + ( 3xy+ 3y)

= 3x3y( x + 1) + 3y( x + 1 )

= ( 3x3y+ 3y) ( x + 1 )

= 3y( x+ 1 ) ( x + 1 )

= 3y( x + 1 ) ( x2 - x + 1 ) ( x + 1 )

= 3y( x + 1 )( x2 - x + 1 )

23 tháng 7 2018

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

23 tháng 7 2018

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

30 tháng 9 2018

\(x^2+3x-10\)

\(=x^2-2x+5x-10\)

\(=x\left(x-2\right)-5\left(x-2\right)\)

\(=\left(x-2\right)\left(x-5\right)\)

hk tốt

^^

a: =xy(1/3+4-2)=7/3xy

b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2

c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2

d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z

a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)

\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

3 tháng 9 2021

a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)

b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

10 tháng 10 2023

loading...  loading...  loading...  

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)