
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)
\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)
\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)
\(\Leftrightarrow x^2+4=4x+8\)
\(\Leftrightarrow x^2-4x-4=0\)
\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)
Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)
P/S: Ko chắc
\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)
\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)
\(\Rightarrow x^2+4=2x+4\)
\(\Rightarrow x^2+4-2x-4=0.\)
\(\Rightarrow x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy .............
Study well

cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................

a,\(\sqrt{1-x}=\sqrt[3]{27}\left(đk:x\le1\right)\Leftrightarrow\sqrt{1-x}=3\)
\(< =>\sqrt{1-x}^2=9< =>1-x=9< =>x=-8\)tm
b,\(\sqrt{x^2-10x+25}=x+1\)
\(< =>\sqrt{\left(x-5\right)^2}=x+1\)
\(< =>|x-5|=x+1\)
\(< =>\orbr{\begin{cases}-x+5=x+1\left(x< 5\right)\\x-5=x+1\left(x\ge5\right)\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=4< =>x=2\left(tm\right)\\-5-1=0\left(vo-li\right)\end{cases}}\)
c, Đặt \(\sqrt{x}=t\left(t\ge0\right)\)khi đó pt tương đương
\(t^2+t-6=0< =>t^2-2t+3t-6=0\)
<\(< =>t\left(t-2\right)+3\left(t-2\right)=0< =>\left(t+3\right)\left(t-2\right)=0\)
\(< =>\orbr{\begin{cases}t+3=0\\t-2=0\end{cases}}< =>\orbr{\begin{cases}t=-3\left(ktm\right)\\t=2\left(tm\right)\end{cases}}\)
khi đó ta được \(\sqrt{x}=t< =>x=4\)
a) \(\sqrt{1-x}=\sqrt[3]{27}\)
\(\Leftrightarrow\sqrt{1-x}=3\)
\(\Leftrightarrow1-x=9\)
\(\Rightarrow x=-8\)
b) \(\sqrt{x^2-10x+25}=x+1\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+1\)
\(\Leftrightarrow\left|x-5\right|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=x+1\\x-5=-x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0=6\left(vl\right)\\2x=4\end{cases}}\Rightarrow x=2\)
c) \(x+\sqrt{x}-6=0\)
\(\Leftrightarrow\left(x+3\sqrt{x}\right)-\left(2\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=-3\left(vl\right)\end{cases}}\Rightarrow x=4\)

a) chắc là nhóm lại thui để sau mk làm:v
b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
Đk: tự lm nhé :v
\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)
\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)
\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)
Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)

Pt (1) \(\Leftrightarrow\) \(x^3+2\left(y-1\right)^2=-1\Leftrightarrow2\left(y-1\right)^2=-1-x^3\)
Vì \(2\left(y-1\right)^2\ge0\Leftrightarrow-1-x^3\ge0\Leftrightarrow x^3\le-1\Leftrightarrow x\le-1\) (1)
Pt (2) \(\Leftrightarrow\) \(x^2+x^2y^2-2y=0\Leftrightarrow x^2\left(y^2+1\right)=2y\Leftrightarrow x^2=\frac{2y}{y^2+1}\)
Vì \(y^2+1\ge2y\) nên \(x^2\le1\Leftrightarrow-1\le x\le1\) (2)
Từ (1) và (2) ta có: \(x\ge-1;x\le-1\Rightarrow x=-1\)nên y=1

\(x-1-2\times\sqrt{x-1}\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-2=0\)
\(\left(\sqrt{x-1}-\frac{1}{2}\right)^2-\frac{9}{4}=0\)
\(\left(\sqrt{x-1}-\frac{1}{2}\right)^2=\frac{9}{4}\)
\(\sqrt{x-1}-\frac{1}{2}=\frac{3}{2}\) hoặc \(\sqrt{x-1}-\frac{1}{2}=-\frac{3}{2}\)
\(x=5\)
Điều kiện : căn(X-1) lớn hơn hoặc bằng 0
=> X lớn hơn hoặc bằng 1.
X - căn(X-1) - 3 = 0
<=> X - 1 - 2 .1/2 . căn(X-1) + 1/4 -1/4 - 2 = 0
<=> [(X - 1) - 2.1/2.căn(X-1) + 1/4 ] - 1/4 - 2 =0
<=> ( căn(X-1) - 1/2 )^2 - 9/4 = 0
<=> ( căn(X-1) - 1/2 )^2 = 9/4
=> căn(X-1) - 1/2 = 3/2 => căn(X-1) = 2 => X-1 = 4 => X=5
hoặc căn(X-1) -1/2 = -3/2 => căn(X-1) = -1 (vô lý) => không tìm được X
VẬY X=5
\(\left(x+3\right)\left(\frac{x+3}{2}-1\right)=0\)
TH1: \(x+3=0\)
\(x=-3\)
TH2: \(\frac{x+3}{2}-1=0\)
\(\frac{x+3}{2}=1\)
\(x+3=2\)
\(x=2-3=-1\)
Vậy phương trình đã cho có 2 nghiệm \(x=-3;x=-1\)
(\(x+3\)).(\(\frac{x+3}{2}\) - 1) = 0
\(\left[\begin{array}{l}x+3=0\\ \frac{x+3}{2}-1=0\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ \frac{x+3}{2}=1\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x+3=2\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x=2-3\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x=-1\end{array}\right.\)
vậy \(x\) ∈ {-3; -1}