Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BDT AM-GM ta có:\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)
\(\Rightarrow\frac{VT}{3}\ge\frac{x^2}{xy+xz+x}+\frac{y^2}{yz+yx+y}+\frac{z^2}{xz+zy+z}\)
\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+xy+z}\) (Cauchy-Schwarz)
Do \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)\(\Rightarrow\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow x+y+z\le x^2+y^2+z^2\).Suy ra
\(2\left(xy+yz+xz\right)+x+y+z\le2\left(xy+yz+xz\right)+x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra \(\frac{VT}{3}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\Rightarrow VT\ge3\) (điều phải chứng minh)
Dấu "=" xảy ra khi x=y=z=1
Ta có: \(x\left(x+1\right)=\frac{\sqrt{5}-1}{2}.\frac{\sqrt{5}+1}{2}=1\)
Ta có: x5 + x4 - x3 + 1 = (x5 + x4) - x3 + 1 = x3 - x3 + 1 = 1
x2 + x - 3 = x(x + 1) - 3 = - 2
x5 + x4 - x3 - 22016 = - 22016
Từ đó ta có
\(=1^{2017}+\frac{\left(-2\right)^{2016}}{-2^{2016}}=1-1=0\)
Ta có: \(x^2\text{+}x-1=...=0 \)
\(=>x^3\left(x^2\text{+}x-1\right)=0\)
=> \(x^5\text{+}x^4-x^3=0\)
=> A=\(\left(\left(x^5\text{+}x^4-x^3\right)\text{+}1\right)^{2017}\text{+}\frac{\left(\left(x^2\text{+}x-1\right)-2\right)^{2016}}{\left(x^5\text{+}x^4-x^3\right)-2^{2016}}\)
=\(1^{2017}\text{+}\frac{2^{2016}}{-2^{2016}}=1-1=0\)
Bài 6:
ĐK: $x\geq \frac{2}{3}$
Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$
PT trở thành:
$a-b=a^2-b^2$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)
Nếu $a+b-1=0$
$\Leftrightarrow b=1-a$
$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$
$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$
$\Leftrightarrow x+4=2\sqrt{4x+1}$
$\Rightarrow (x+4)^2=4(4x+1)$
$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$
Vậy.......
Bài 5:
ĐK: $x\geq -2$
PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$
Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$
Khi đó PT trở thành:
$3ab=2b^2+a^2$
$\Leftrightarrow a^2-3ab+2b^2=0$
$\Leftrightarrow a(a-b)-2b(a-b)=0$
$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+2-(x^2-2x+4)=0$
$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)
Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$
$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$
$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)
Vậy.........
a) ĐK: \(x\inℝ\).
Đặt \(\sqrt{x^2-3x+4}=a>0\)
\(x^2-5x+4-\left(2x-1\right)a=0\)
\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)
\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)
Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)
P/s: em ko chắc:v
\(x^3-x^2-x=\frac{1}{3}\)
\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)
\(\Leftrightarrow3x^2=3\left(x^2+x+\frac{1}{3}\right)\)
\(\Leftrightarrow3x^2=3x^2+3x+1\)
\(\Leftrightarrow3x^3+x^3=x^3+3x^3+3x+1\)
\(\Leftrightarrow4x^3=\left(x+1\right)^3\)
\(\Leftrightarrow\sqrt[3]{\left(4x^3\right)}=\sqrt[3]{\left(x+1\right)^3}\)
\(\Leftrightarrow\sqrt[3]{4.x}=x+1\)
\(\Leftrightarrow\sqrt[3]{4.x}-x=1\)
\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\left(\sqrt[3]{4}-1\right)}\)