\(\frac{1_{ }}{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

\(x^3-x^2-x=\frac{1}{3}\)

\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)

\(\Leftrightarrow3x^2=3\left(x^2+x+\frac{1}{3}\right)\)

\(\Leftrightarrow3x^2=3x^2+3x+1\)

\(\Leftrightarrow3x^3+x^3=x^3+3x^3+3x+1\)

\(\Leftrightarrow4x^3=\left(x+1\right)^3\)

\(\Leftrightarrow\sqrt[3]{\left(4x^3\right)}=\sqrt[3]{\left(x+1\right)^3}\)

\(\Leftrightarrow\sqrt[3]{4.x}=x+1\)

\(\Leftrightarrow\sqrt[3]{4.x}-x=1\)

\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{\left(\sqrt[3]{4}-1\right)}\)

6 tháng 2 2017

Áp dụng BDT AM-GM ta có:\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)

\(\Rightarrow\frac{VT}{3}\ge\frac{x^2}{xy+xz+x}+\frac{y^2}{yz+yx+y}+\frac{z^2}{xz+zy+z}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+xy+z}\) (Cauchy-Schwarz)

Do \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)\(\Rightarrow\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow x+y+z\le x^2+y^2+z^2\).Suy ra

\(2\left(xy+yz+xz\right)+x+y+z\le2\left(xy+yz+xz\right)+x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra \(\frac{VT}{3}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\Rightarrow VT\ge3\) (điều phải chứng minh)

Dấu "=" xảy ra khi x=y=z=1

14 tháng 11 2016

Ta có: \(x\left(x+1\right)=\frac{\sqrt{5}-1}{2}.\frac{\sqrt{5}+1}{2}=1\)

Ta có: x5 + x4 - x3 + 1 = (x5 + x4) - x3 + 1 = x3 - x3 + 1 = 1

x2 + x - 3 = x(x + 1) - 3 = - 2

x5 + x4 - x3 - 22016 = - 22016

Từ đó ta có

\(=1^{2017}+\frac{\left(-2\right)^{2016}}{-2^{2016}}=1-1=0\)

17 tháng 11 2016

Ta có: \(x^2\text{+}x-1=...=0 \)

\(=>x^3\left(x^2\text{+}x-1\right)=0\)

=> \(x^5\text{+}x^4-x^3=0\)

=> A=\(\left(\left(x^5\text{+}x^4-x^3\right)\text{+}1\right)^{2017}\text{+}\frac{\left(\left(x^2\text{+}x-1\right)-2\right)^{2016}}{\left(x^5\text{+}x^4-x^3\right)-2^{2016}}\)

=\(1^{2017}\text{+}\frac{2^{2016}}{-2^{2016}}=1-1=0\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 6:

ĐK: $x\geq \frac{2}{3}$

Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$

PT trở thành:

$a-b=a^2-b^2$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)

Nếu $a+b-1=0$

$\Leftrightarrow b=1-a$

$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$

$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$

$\Leftrightarrow x+4=2\sqrt{4x+1}$

$\Rightarrow (x+4)^2=4(4x+1)$

$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$

Vậy.......

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 5:

ĐK: $x\geq -2$

PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$

Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$

Khi đó PT trở thành:
$3ab=2b^2+a^2$

$\Leftrightarrow a^2-3ab+2b^2=0$

$\Leftrightarrow a(a-b)-2b(a-b)=0$

$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$

$\Leftrightarrow x+2-(x^2-2x+4)=0$

$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)

Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$

$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$

$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)

Vậy.........

29 tháng 8 2019

a) ĐK: \(x\inℝ\).

Đặt \(\sqrt{x^2-3x+4}=a>0\)

\(x^2-5x+4-\left(2x-1\right)a=0\)

\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)

\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)

Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)

P/s: em ko chắc:v