\(\dfrac{27}{64}\)).(\(\sqrt{x}\)-3)=0 
Tìm x(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

\(ĐK:x\ge0\\ PT\Leftrightarrow\left(x-\dfrac{3}{4}\right)\left(x^2+\dfrac{3}{4}x+\dfrac{9}{16}\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\left(n\right)\\\sqrt{x}=3\left(n\right)\\x^2+2\cdot\dfrac{3}{8}x+\dfrac{9}{64}+\dfrac{27}{64}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=9\\\left(x+\dfrac{3}{8}\right)^2+\dfrac{27}{64}=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=9\end{matrix}\right.\)

14 tháng 6 2017

a.

| x | = 5,6

=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)

Vậy \(x\in\left\{-5,6;5,6\right\}\)

b, \(\left|x-3,5\right|=5\)

=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)

Vậy \(x\in\left\{-1,5;8,5\right\}\)

c,\(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=> \(\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{4};\dfrac{5}{4}\right\}\)

d,\(\left|4x\right|-\left(\left|-13,5\right|\right)=\left|\dfrac{1}{4}\right|\)

=> \(\left|4x\right|-13,5=\dfrac{1}{4}\)

=> \(\left|4x\right|=13,75\)

=>\(\left[{}\begin{matrix}4x=13,75\\4x=-13,75\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=3,4375\\x=-3,4375\end{matrix}\right.\)

Vậy \(x\in\left\{-3,4375;3,4375\right\}\)

14 tháng 6 2017

e, ( x - 1 ) 3 = 27

=> x - 1 = 3

=> x = 4

Vậy x = 4

f, ( 2x - 3)2 = 36

=> \(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=4,5\\x=-1,5\end{matrix}\right.\)

Vậy x\(\in\left\{-1,5;4,5\right\}\)

g, \(5^{x+2}=625\)

=> \(5^{x+2}=5^4\)

=> x + 2 = 4

=> x = 2

Vậy x = 2

h, ( 2x - 1)3 = -8

=> 2x - 1 = -2

=> x = \(\dfrac{-1}{2}\)

Vậy x = \(\dfrac{-1}{2}\)

i, \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)

=> \(\dfrac{1.2.3.4.5...30.31}{4.6.8.10.12...62.64}=2^x\)

=>\(\dfrac{1.2.3.4.5...30.31}{\left(2.3.4.5...30.31.32\right)\left(2.2.2.2...2.2_{ }\right)}=2^x\)(có 31 số 2)

=> \(\dfrac{1}{32.2^{31}}=2^x\)

=> \(\dfrac{1}{2^{36}}=2^x\)

=> x = -36

Vậy x = -36

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

a)

\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)

b)

\(\frac{1}{4}-(2x-1)^2=0\)

\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)

\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)

c)

\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)

\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)

\(\Leftrightarrow 5-x=\frac{-3}{4}\)

\(\Leftrightarrow x=\frac{23}{4}\)

d)

\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)

\(\Rightarrow x=3,8:2=1,9\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

e)

\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)

\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)

f)

\(5^{(x+5)(x^2-4)}=1\)

\(\Leftrightarrow (x+5)(x^2-4)=0\)

\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)

g)

\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)

\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)

h)

\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)

\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)

11 tháng 2 2018

a,\(\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{3}{4}:\sqrt{\dfrac{49}{64}}\)

\(\Leftrightarrow\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{2}{7}x=\dfrac{19}{14}\)

\(\Leftrightarrow x=\dfrac{19}{4}\)

11 tháng 2 2018

Với mọi \(x\in R\)

\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)

với \(x\ge0\) ta được: \(\left\{{}\begin{matrix}\left|x+2016\right|=x+2016\\\left|x+2017\right|=x+2017\\\left|x+2018\right|=x+2018\end{matrix}\right.\)

\(pt\Leftrightarrow3x+6051=6x\Leftrightarrow3x=6051\Leftrightarrow x=2017\)

a) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow x=\left(\sqrt{7}\right)^2\)

b) \(5\sqrt{x}+1=40\)

\(\Rightarrow5\sqrt{x}=39\)

\(\Rightarrow\sqrt{x}=7,8\)

\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)

c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{x}=1,2\)

\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)

d) \(4x^2-1=0\)

\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(\sqrt{x+1}-2=0\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Rightarrow x+1=1,414\)

\(\Rightarrow x=0,414\)

f) \(2x^2+0,82=1\)

\(\Rightarrow2x^2=0,18\)

\(\Rightarrow x^2=0,09\)

\(\Rightarrow x=\pm0,3\)

g) Không có kết quả

14 tháng 7 2016

Bài 1 :

a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)

TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)

\(x-\frac{1}{3}< \frac{5}{3}\)

\(x< 2\)

TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)

\(\frac{1}{3}-x< \frac{5}{3}\)

\(x>-\frac{4}{3}\)

14 tháng 7 2016

Bài 2 :

a. \(\left(x-2\right)^2=1\)

\(\left(x-2\right)^2-1=0\)

\(\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\left(x-3\right)\left(x-1\right)=0\)

\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)

11 tháng 8 2017

a) \(x^3+64=x^3+4^3=\left(x+4\right)\left(x^2-4x+16\right)\)

b) \(\dfrac{1}{27}x^3+8y^3=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3=\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)

c) \(x^3-27y^2=x^3-\left(3y\right)^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

d) \(x^6-\dfrac{1}{27}=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)

20 tháng 11 2017

a) Ta có: \(x^4=64\)

\(\Leftrightarrow\) \(x^2=\sqrt{64}=8\)

\(\Leftrightarrow\) \(x=2\sqrt{2}\)

\(\Leftrightarrow\) \(x\approx2.83\)

b) Ta có: \(x-\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )

\(\Leftrightarrow\) \(\left(\sqrt{x}\right)^2-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(\sqrt{x}-1=0\)

\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(\sqrt{x}=1\)

(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(x=1\) (thỏa mãn ĐKXĐ)

c) Ta có: \(2x-3\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )

\(\Leftrightarrow\) \(2\left(\sqrt{x}\right)^2-3\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(2\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(2\sqrt{x}-3=0\)

\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(2\sqrt{x}=3\)

(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{3}{2}=1.5\) (thỏa mãn ĐKXĐ)

NOTE: A giải theo cách của lớp 9 nên có cái j ko hiểu cứ nói a. E mà làm theo cách của a là bị nói là sai đó.

21 tháng 11 2017

Thank you everyone !!! ^_^ ^_^ ^_^

30 tháng 10 2018

a) Ta có: x : y : z = 2 : 3 : 5

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Giả sử: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

⇒ x = 2k ; y = 3k ; z = 5k

Ta có: xyz = 810

⇒ 2k . 3k . 5k = 810

30 . k3 = 810

k3 = 810 : 30

k3 = 27

⇒ k = 3

⇒ k = 3 ⇒ x = 2 . 3 = 6

y = 3 . 3 = 9

z = 5 . 3 = 15

Vậy x = 6 ; y = 9 ; z = 15

b) Ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}=\dfrac{x^2+2y^2-3z^2}{4+18-48}\)

\(=\dfrac{-650}{-26}=25\)

+) \(\dfrac{x}{2}=25\) ⇒ x = 50

\(\dfrac{y}{3}=25\) ⇒ y = 75

\(\dfrac{z}{4}=25\) ⇒ z = 100

Vậy x = 50 ; y = 75 ; z = 100

4 tháng 1 2022

câu a hơi thừa nhé ko cần thêm cái giả sử đâu^^

26 tháng 11 2016

a)\(\left(x+1\right)^3=-27\)

\(\left(x+1\right)^3=\left(-3\right)^3\)

x+1=-3

x=(-3)-1

x=-4

b)6-3x=8

3x=6-8

3x=(-2)

x=\(-\frac{2}{3}\)

 

 

26 tháng 11 2016

a) \(\left(x+1\right)^3=-27\)

\(\Rightarrow\left(x+1\right)^3=\left(-3\right)^3\)

\(\Rightarrow x-1=-3\)

\(\Rightarrow x=-4\)

Vậy \(x=-4\)

b) \(\sqrt{36}-\sqrt{9}.x=\sqrt{64}\)

\(\Rightarrow6-3.x=8\)

\(\Rightarrow3x=-2\)

\(\Rightarrow x=\frac{-2}{3}\)

Vậy \(x=\frac{-2}{3}\)