K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Ta có: \(x^3-7x^2=3x^2-12x\)

\(\Leftrightarrow x^3-10x^2+12x=0\)

\(\Leftrightarrow x\left(x^2-10x+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-10x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-5\right)^2=13\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x-5=\pm\sqrt{13}\end{cases}}\)

\(\Rightarrow x\in\left\{0;5-\sqrt{13};5+\sqrt{13}\right\}\)

2 tháng 2 2021

\(x^3-7x^2=3x^2-12x\)

\(\Leftrightarrow x^3-7x^2-3x^2+12x=0\)

\(\Leftrightarrow x^3-10x^2+12x=0\)

\(\Leftrightarrow x\left(x^2-10x+12\right)=0\Leftrightarrow x=0\)

6 tháng 1 2021

x2-2 bn

6 tháng 1 2021

bn có thể giải thích rõ hơn không 

NV
5 tháng 1

a.

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3-3x^2+2x+3x^2-9x+6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)+3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-x-2x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

NV
5 tháng 1

f.

\(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)

\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-3\left(x-1\right)\right]\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\\x=\pm\sqrt{3}\end{matrix}\right.\)

11 tháng 11 2021

\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)

4) Ta có: \(\dfrac{2x-5}{5}-\dfrac{x+3}{3}=\dfrac{2-3x}{2}-x-2\)

\(\Leftrightarrow\dfrac{6\left(2x-5\right)}{30}-\dfrac{10\left(x+3\right)}{30}=\dfrac{15\left(2-3x\right)}{30}-\dfrac{30\left(x+2\right)}{30}\)

\(\Leftrightarrow12x-30-10x-30=30-45x-30x-60\)

\(\Leftrightarrow-22x-60=-75x-30\)

\(\Leftrightarrow-22x+75x=-30+60\)

\(\Leftrightarrow53x=30\)

\(\Leftrightarrow x=\dfrac{30}{53}\)

Vậy: \(S=\left\{\dfrac{30}{53}\right\}\)

5) Ta có: \(\dfrac{5x-3}{6}-\dfrac{7x-1}{4}=5\)

\(\Leftrightarrow\dfrac{2\left(5x-3\right)}{12}-\dfrac{3\left(7x-1\right)}{12}=\dfrac{60}{12}\)

\(\Leftrightarrow10x-6-21x+3=60\)

\(\Leftrightarrow-11x-3=60\)

\(\Leftrightarrow-11x=63\)

\(\Leftrightarrow x=-\dfrac{63}{11}\)

Vậy: \(S=\left\{-\dfrac{63}{11}\right\}\)

28 tháng 2 2021

`9,x^3+x^2-2=0`

`x^3-x^2+2x^2-2=0`

`<=>x^2(x-1)+2(x-1)(x+1)=0`

`<=>(x-1)(x^2+2x+2)=0`

`<=>x=1`

`14,x^2-2x+1=0`

`<=>(x-1)^2=0`

`<=>x-1=0`

`<=>x=1`

`15,x^3+3x^2+3x+1=0`

`<=>(x+1)^3=0`

`<=>x+1=0`

`<=>x=-1`

21 tháng 3 2019

2 x - 1 + 2 x + 3 x 2 + x + 1 = 2 x - 1 2 x + 1 x 3 - 1     Đ K X Đ : x ≠ 1 ⇔ 2 x 2 + x + 1 x 3 - 1 + 2 x + 3 x - 1 x 3 - 1 = 2 x - 1 2 x + 1 x 3 - 1

⇔ 2( x 2  + x + 1) + (2x + 3)(x – 1) = (2x – 1)(2x + 1)

⇔ 2 x 2 + 2x + 2 + 2 x 2  – 2x + 3x – 3 = 4 x 2  – 1

⇔ 2 x 2  + 2 x 2  – 4 x 2  + 2x – 2x + 3x = -1 – 2 + 3

⇔ 3x = 0 ⇔ x = 0 (thỏa mãn)

Vậy phương trình có nghiệm x = 0.

Bài 6: 

1) Ta có: \(2x\left(x-5\right)-\left(x+3\right)^2=3x-x\left(5-x\right)\)

\(\Leftrightarrow2x^2-10x-\left(x^2+6x+9\right)=3x-5x+x^2\)

\(\Leftrightarrow2x^2-10x-x^2-6x-9-3x+5x-x^2=0\)

\(\Leftrightarrow-14x-9=0\)

\(\Leftrightarrow-14x=9\)

\(\Leftrightarrow x=-\dfrac{9}{14}\)

Vậy: \(S=\left\{-\dfrac{9}{14}\right\}\)

28 tháng 2 2021

`1)2x(x-5)-(x+3)^2=3x-x(5-x)`

`<=>2x^2-10x-x^2-6x-9=3x-5x+x^2`

`<=>x^2-16x-9=x^2-2x`

`<=>14x=-9`

`<=>x=-9/14`

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

10 tháng 10 2021

a) \(=\left(x-2\right)^2\)

b) \(=\left(2x+1\right)^2\)

c) \(=\left(4x-3y\right)\left(4x+3y\right)\)

d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)

e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)

f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)

g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)

h) \(=\left(x+2\right)^3\)

i) \(=\left(1-x\right)^3\)

10 tháng 10 2021

a/ $=(x-2)^2$

b/ $=(2x+1)^2$

c/ $=(4x-3y)(4x+3y)$

d/ $=(1-x)(x+7)$

e/ $=(-x+1)(5x-1)$

f/ $=(x-y)(x^2+xy+y^2)$

g/ $=(3+x)(9-3x+x^2)$

h/ $=(x+2)^3$

i/ $=(1-x)^3$

10 tháng 10 2021

a: \(x^2-4x+4=\left(x-2\right)^2\)

b: \(4x^2+4x+1=\left(2x+1\right)^2\)

g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)