K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

\(x^3+6x^2+5x=x\left(x^2+6x+5\right)=x\left(x^2+x+5x+5\right)=x\left[x\left(x+1\right)+5\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x+5\right)\)

12 tháng 9 2015

6853 + 315= ( 685 + 315 ) . ( 8652 + 685 . 315 + 315) = 1 000.

Vì các số hạng trong ngoặc đều chia hết cho 25 nên 865+ 315chia hết cho 25 000.

7 tháng 7 2016

 sao lại là 865 vậy bạn

6 tháng 11 2019

b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath

24 tháng 3 2020

a) 2(x + 5) - x^2 - 5x = 0

<=> 2x + 10 - x^2 - 5x = 0

<=> -3x + 10 - x^2 = 0

<=> x^2 + 3x - 10 = 0

<=> (x - 2)(x + 5) = 0

<=> x - 2 = 0 hoặc x + 5 = 0

<=> x = 2 hoặc x = -5

b) 2(x - 3)(x^2 + 1) + 15x - 5x^2 = 0

<=> 2x^3 + 2x - 6x^2 - 6 + 15x - 5x^2 = 0

<=> 2x^3 + 17x - 11x^2 - 6 = 0

<=> (2x^2 - 7x + 3)(x - 2) = 0

<=> (2x^2 - x - 6x + 3)(x - 2) = 0

<=> [x(2x - 1) - 3(2x - 1)](x - 2) = 0

<=> (x - 3)(2x - 1)(x - 2) = 0

<=> x - 3 = 0 hoặc 2x - 1 = 0 hoặc x - 2 = 0

<=> x = 3 hoặc x = 1/2 hoặc x = 2

c) (x + 2)(3 - 4x) = x^2 + 4x + 2

<=> 3x - 4x^2 + 6 - 8x = x^2 + 4x + 2

<=> -5x - 4x^2 + 6 = x^2 + 4x + 2

<=> 5x + 4x^2 - 6 + x^2 + 4x + 2 = 0

<=> 9x + 5x^2 - 4 = 0

<=> 5x^2 + 10x - x - 4 = 0

<=> 5x(x + 2) - (x + 2) = 0

<=> (5x - 1)(x + 2) = 0

<=> 5x - 1 = 0 hoặc x + 2 = 0

<=> x = 1/5 hoặc x = -2

27 tháng 11 2016

bac hai thi bien doi ve tong binh phuong

\(A=\left(x^2-2.3x+9\right)+\left(y^2+2.\frac{5}{2}y+\frac{25}{4}\right)+\left(1-9-\frac{25}{4}\right)\)cu ep vao BP thua de ra ngoai

\(A=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2+\left(1-9-\frac{25}{4}\right)\)

\(A\ge\left(1-9-\frac{25}{4}\right)\)co tinh de nguyen cac gia tri them bot de ban de hieu

dang thuc khi x=3; y=-5/2

27 tháng 11 2016

Cảm ơn bạn nha...

30 tháng 4 2017

 1)    \(25x^4-10x^2y+y^2\)

\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)

\(\Leftrightarrow\left(5x^2+y\right)^2\)

 2)   \(x^4+2x^3-4x-4\)

\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

 \(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)

 3)  \(x^4+x^2+1\)

\(\Leftrightarrow x^4+x^2-x+x+1\)

 \(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)

 4)    \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)

\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)

 5)  \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)

\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)

\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\) 

\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)

1 tháng 5 2017

Cảm ơn bạn Nguyễn Kim Thương :))

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)