Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3+3x^2-7x^2-21x+9x+27=0
x^2(x+3)-7x(x+3)+9(x+3)=0
(x+3)(x^2-7x+9)=0
x = -3 hoặc x^2 - 7x + 9 = 0 (chuyển về pt dạng kx^2 + m)
Bạn chuyển 7x = 2 . x . 7/2 + 49/4 - 49/4
a)\(4x^2-4x+4=0\Leftrightarrow\left(2x-1\right)^2+3\) (đến đây hết pt dc rùi)
b)\(x^3-27=\left(x-3\right)\left(x^2+3x+9\right)\)
c)\(x^3-4x^2+3x=x^3-x^2-3x^2+3x\)
=\(x^2\left(x-1\right)-3x\left(x-1\right)\)
=\(x\left(x-3\right)\left(x-1\right)\)
d)\(4x^2-12x+3=\left(2x-3\right)^2-6\)
=\(\left(2x-3\right)^2-\sqrt{6^2}\)
=\(\left(2x-3-\sqrt{6}\right)\left(2x-3+\sqrt{6}\right)\)
\(a,4x^2-4x+4=4\left(x^2-x+1\right)\)
\(b,x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)
\(c,x^3-4x^2+3x=x\left(x^2-4x+3\right)\)
\(=x\left[\left(x^2-x\right)-\left(3x-3\right)\right]\)
\(=x\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x-3\right)\)
\(d,4x^2-12x+3=4\left(x^2-3x+\frac{3}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+\frac{3}{4}\right)\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\frac{3}{2}\right]\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2\right]\)
\(=4\left(x-\frac{3}{2}-\frac{\sqrt{3}}{\sqrt{2}}\right)\left(x-\frac{3}{2}+\frac{\sqrt{3}}{\sqrt{2}}\right)\)
\(=4\left(x-\frac{3+\sqrt{6}}{2}\right)\left(x-\frac{3-\sqrt{6}}{2}\right)\)
P/s: Dương: câu d t k chắc nx, sai thì thông cảm :)) -Huyền Nhi-
\(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)+\left(-4x^2+12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-4x\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
a) x2 - 9 + (x - 3)2
= (x - 3)(x + 3) + (x - 3)2
= (x - 3)(x + 3 + x - 3)
= 2x(x - 3)
b) x3 - 4x2 + 4x - xy2
= x(x2 - 4x + 4 - y2)
= x\(\left [ (x - 2)^{2} - y^{2} \right ]\)
= x(x - 2 - y)(x - 2 + y)
c) x3 - 4x2 + 12x - 27
= x3 - 27 - 4x2 + 12x
= (x - 3)(x2 + 3x + 9) - 4x(x - 3)
= (x - 3)(x2 + 3x - 4x + 9)
= (x - 3)(x2 - x + 9)
a) \(x^3+2x^2+2x+1\)
\(=\left(x^3+x^2\right)+\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(x+1\right)\)
b) \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x.\left(x-3\right)\)
\(=\left(x-3\right).\left[\left(x^2+3x+9\right)-4x\right]\)
\(=\left(x-3\right).\left(x^2-x+9\right)\)
x^3+3x^2-7x^2-21x+9x+27=0
x^2(x+3)-7x(x+3)+9(x+3)=0
(x+3)(x^2-7x+9)=0
x = -3 hoặc x^2 - 7x + 9 = 0 (chuyển về pt dạng kx^2 + m)