Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+2x^2y+xy^2-9x\)
\(=\)\(x\left[\left(x^2+2xy+y^2\right)-9\right]\)
\(=\)\(x\left[\left(x+y\right)^2-9\right]\)
\(=\)\(x\left(x+y-3\right)\left(x+y+3\right)\)
Chúc bạn học tốt ~
Phùng Minh Quân sai rồi nhé!Nhưng theo như lời hứa giữa hai ta,nên t sẽ không tích sai nhá!
\(x^3-2x^2y+xy^2-9x\)
\(=xy^2-x^2y-3xy-x^2y+x^3+3x^2+3xy-3x^2-9x\)
\(=xy\left(y-x-3\right)-x^2\left(y-x-3\right)+3x\left(y-x-3\right)\)
\(=\left(y-x-3\right)\left(xy-x^2+3x\right)\)
\(=x\left(y-x-3\right)\left(y-x+3\right)\)
a, \(x^3+2x^2+x-xy=x\left(x^2+2x+1-y\right)\)
\(=x\left[\left(x+1\right)^2-y\right]\)
b, \(x^3-y^3+2x^2-2y^2=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left[\left(x^2+xy+y^2\right)+2\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)
x3 + 2x2y + xy2 - 9x
= x( x2 + 2xy + y2 - 9 )
= x[ ( x2 + 2xy + y2 ) - 9 ]
= x[ ( x + y )2 - 32 ]
= x( x + y - 3 )( x + y + 3 )
Bài làm
\(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left[\left(x+y\right)^2-9\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
a
Ta có
\(2x^2+2x=2x\left(x+1\right)\)
b
\(\left(1+xy\right)^2-\left(x+y\right)^2=\left(1+xy-x-y\right)\left(1+xy+x+y\right)\)
\(\left[\left(1-x\right)-y\left(1-x\right)\right]\left[\left(1+x\right)+y\left(1+x\right)\right]=\left(1-x\right)\left(1-y\right)\left(1+x\right)\left(1+y\right)\)
x3 -2x2 +x- xy2
= x ( x2 - 2x + 1 - y2)
= x\(\left[\left(x-1\right)^2-y^2\right]\)
= x ( x- 1- y) ( x - 1 + y )
X3-2x2+x-xy2
=(x3+x)-(2x2-xy2)
=x(x2+1)-x(2x-y2)
=x(x2-2x+1-y2)
=x[(x-1)2-y]
=x(x-1-y)(x-1+y)
Chúc bạn làm tốt@"
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1+y\right)\left(x-1-y\right)\)
a) \(x^3\) + \(2x^2\) + \(x\)
= \(x\)(\(x^2\) + \(x\) + 1)
= \(x\)(\(x^2+1\))
b)\(x^2\)\(y\) + \(xy\) - \(x\) - \(y\)
= (\(x^2y-y\)) + \(\left(xy-y\right)\)
= \(y\left(x^2-1\right)+\left(xy-y\right)\)
= \(y\left(x-1\right)\left(x+1\right)+y\left(x-1\right)\)
= \(y\left(x-1\right)\left(x+1\right)+1\)
\(x^3-2x^2+x-xy^2\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1+y\right)\left(x-1-y\right)\)
\(x^3-2x^2+x-xy^2\)
\(=x.\left(x^3+2xy\right)\)
\(=x.\left[\left(x^3+2xy+x\right)-xy^2\right]\)
\(=x.\left[\left(x+y\right)^2-3^2\right]\)
\(=x.\left(x+y+3\right).\left(x+y-3\right)\)
P/s: Ko chắc