Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
2) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=\left(x-1\right)^2\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\left(4x-1\right)\)
4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(x+2\right)\left(-2x-10\right)\)
\(=-2\left(x+2\right)\left(x+5\right)\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2x+2\right)\left(x-2\right)\)
x^2 - 4x - 6 = 0
<=>x2-4x+4-10=0
<=>(x-2)2=10
=>x-2=\(\sqrt{10}\)hoặc x-2=\(-\sqrt{10}\)
=>x=\(\sqrt{10}+2\)hoặc x=\(2-\sqrt{10}\)
x^2 + 2x - 2 = 0
<=>x2+2x+1-3=0
<=>(x+1)2=3
=>x+1=\(\sqrt{3}\)hoặc x+1=\(-\sqrt{3}\)
=>x=\(\sqrt{3}-1\)hoăc 5x=\(-1-\sqrt{3}\)
mấy baj này phaj làm như thế này thuj
d) x^3 + 2x^2 + 3x + 1
Bó tay
e) x^2 - 2x - 4y^2 - 4y
= x^2 - 2x + 1 - 4y^2 - 4y - 1
= ( x + 1 )^2 - ( 4y^2 + 4y + 1 )
= ( x + 1 )^2 - ( 2y + 1 )^2
= ( x+ 1 - 2y - 1 )( x + 1 + 2y + 1 )
= ( x - 2y )(x + 2y +2 )
4x2 là gì
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\left(x-2y-2\right)\left(x+2y\right)\)
hk tốt
^^
Đặt x^2+2x=t =>3t^2-2t-1=3t^2-3t+t-1=3t(t-1)+(t-1)=(t-1)(3t+1)
=>(x^2+2x-1)(3x^2+6x+1)
16) 2x + 2y - x2 - xy = ( 2x + 2y ) - ( x2 + xy ) = 2( x + y ) - x( x + y ) = ( x + y )( 2 - x )
17) x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2( x + 2y ) = ( x + 2y )( x - 2y - 2 )
18) x2y - x3 - 9y + 9x = ( x2y - x3 ) - ( 9y - 9x ) = x2( y - x ) - 9( y - x ) = ( y - x )( x2 - 9 ) = ( y - x )( x - 3 )( x + 3 )
19) x2( x - 1 ) + 16( 1 - x ) = x2( x - 1 ) - 16( x - 1 ) = ( x - 1 )( x2 - 16 ) = ( x - 1 )( x - 4 )( x + 4 )
20) 2x2 + 3x - 2xy - 3y = ( 2x2 - 2xy ) + ( 3x - 3y ) = 2x( x - y ) + 3( x - y ) = ( x - y )( 2x + 3 )
20, \(2x^2+3x-2xy-3y=2x\left(x-y\right)+3\left(x-y\right)=\left(2x+3\right)\left(x-y\right)\)
16, \(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
17, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
18, \(x^2y-x^3-9y+9x=-x\left(x^2-9\right)+y\left(x^2-9\right)=\left(-x-y\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
19, \(x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x^2-16\right)\left(x-1\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\)
a/ \(x^3=5x-12\Leftrightarrow x^3-5x+12=0\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(4x+12\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+4\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+4\right)=0\)
*) x + 3 = 0 <=> x = -3
S = {-3}
b/ có ng giải
c/ \(\left(2x^2-5x+3\right)^2=\left(x^2+x-2\right)^2\Leftrightarrow\left(2x^2-5x+3\right)^2-\left(x^2+x-2\right)^2=0\)
\(\Leftrightarrow\left(2x^2-5x+3-x^2-x+2\right)\left(2x^2-5x+3+x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-6x+5\right)\left(3x^2-4x-1\right)=0\)
\(\Leftrightarrow\left[\left(x^2-x\right)-\left(5x+5\right)\right]\left(3x^2-4x+1\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)-5\left(x-1\right)\right]\left(3x^2-4x+1\right)=0\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(3x^2-4x+1\right)=0\)
*) x- 5 = 0 <=> x = 5
*) x- 1 = 0 <=> x = 1
S={1;5}
d/ \(x^3-x^2=4\left(x-1\right)^2\Leftrightarrow x^3-x^2-4\left(x-1\right)^2=x^3-x^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-5x^2+8x-4=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2=0\)
*) x - 1 = 0 <=> x = -1
*) (x - 2)^2 = 0 <=> x = 2
S = {-1;2}
\(x^3-4x^2+4x-1\)
\(=x^3-x^2-3x^2+3x+x-1\)
\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)
Đặt \(x^4-2x^3-x^2-2x+1=\left(x^2+ax+1\right)\left(x^2+bx+1\right)=x^4+bx^3+x^2+ãx^3+abx^2+ax+x^2+bx+1\)
=> \(x^4-2x^3-x^2-2x+1=x^4+\left(a+b\right)x^3+\left(ab+2\right)x^2+\left(a+b\right)x+1\)
=> \(\hept{\begin{cases}a+b=-2\\ab+2=-1\\a+b=-2\end{cases}}\Rightarrow a=-3;b=1\)
Ta có : x3 + 2x2 + 2x + 1 = 0
<=> x3 + 2x2.1 + 2.12.x + 13 = 0
<=> (x + 1)3 = 0
=> x + 1 = 0
=> x = -1
\(x^3+2x^2+2x+1=0\)
\(x^3+x^2+x^2+x+x+1=0\)
\(x^2\left(x+1\right)+x\left(x+1\right)+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)=0\)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)