![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-3\sqrt{3}x^2+9x-3\sqrt{3}=0\)
\(\Leftrightarrow x^3-3.x^2.\sqrt{3}+3.x.\left(\sqrt{3}\right)^2-\left(\sqrt{3}\right)^3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^3=0\)
\(\Leftrightarrow x-\sqrt{3}=0\)
\(\Leftrightarrow x=\sqrt{3}\)
Vậy \(x=\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4 : Tìm x biết:
a, 4x2 - 49 = 0
\(\Leftrightarrow\) (2x)2 - 72 = 0
\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b, x2 + 36 = 12x
\(\Leftrightarrow\) x2 + 36 - 12x = 0
\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0
\(\Leftrightarrow\) (x - 6)2 = 0
\(\Leftrightarrow\) x = 6
e, (x - 2)2 - 16 = 0
\(\Leftrightarrow\) (x - 2)2 - 42 = 0
\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0
\(\Leftrightarrow\) (x - 6)(x + 2) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
f, x2 - 5x -14 = 0
\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0
\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+2\sqrt{2}x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(\Rightarrow x=0;2x^2+2\sqrt{2}x+1=0\)
\(\Delta=\left(2\sqrt{2}\right)^2-4\cdot2\cdot1=0\)
\(\Rightarrow x_{1,2}=\frac{-2\sqrt{2}\pm\sqrt{0}}{4}=-\frac{1}{\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vào link này nhé ,mình tìm cả max và min luôn
https://olm.vn/hoi-dap/detail/221940896077.html
Hoặc trong câu hỏi tương tự cũng có
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ x2-2x-8=0
x2-2x+4x-8=0
x(x-2)+4(x-2)=0
(x-2)(x+4)=0
Th1: x-2=0 <=>x=2
Th2: x+4=0 <=> x=-4
b/ sorry bạn mình ko viết được căn bậc
x căn bậc x -8=0
x căn bậc x =8
căn bậc x bình nhân căn bậc x=8
căn bậc x3=8
căn bậc x3=23
căn bậc x=2
<=> x=22=4
c/ áp dụng hằng đẳng thức số 3:
(x-2)2-(x+3)2=8
(x-2-x-3)(x-2+x+3)=8
-5(2x+1)=8
2x+1=8/-5
2x=-13/5
x=-13/10
nhớ t ick cho mình nha