K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

\(\left(-x^2y\right)^3\cdot\dfrac{1}{2}\cdot x^2y^3\cdot\left(-2xy^2z\right)^2\\ =-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2\\ =\left(-1\cdot\dfrac{1}{2}\cdot4\right)\cdot\left(x^6\cdot x^2\cdot x^2\right)\cdot\left(y^3\cdot y^3\cdot y^4\right)\cdot z^2\\ =-2x^{10}y^{10}z^2\)

27 tháng 2 2021

bạn chụp ảnh sẽ dễ nhìn hơn :D

27 tháng 2 2021

\(\left(-x^3.z.y\right).\left(\dfrac{2}{3}.y.x^2\right)^2\)

\(=-x^3.z.y.\dfrac{4}{9}.y^2.x^4\)

\(=-\dfrac{4}{9}x^7.y^3.z\)

27 tháng 2 2021

`(-x^3zy)(2/3yx^2)^2`

`=-4/9x^3zy.y^2x^4`

`=-4/9x^{3+4}.y^{1+2}z`

`=-4/9x^7y^3z`

23 tháng 1 2022

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(T=\dfrac{2x^2-y^2}{2x^2+y^2}=\dfrac{2\left(2k\right)^2-\left(3k\right)^2}{2\left(2k\right)^2+\left(3k\right)^2}=\dfrac{8k^2-9k^2}{8k^2+9k^2}=\dfrac{-k^2}{17k^2}=\dfrac{-1}{17}\)

23 tháng 1 2022

tks bn

13 tháng 7 2016

BIK CHẾT LIỀNleuleu

19 tháng 7 2023

a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)

b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)

\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)

d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)

\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)

19 tháng 7 2023

a) �2=�5=�7;�+�+�=56

�2=�5=�7=�+�+�2+5+7=5614=4

⇒{�=4.2=8�=4.5=20�=4.7=28

b) �1,1=�1,3=�1,4(1);2�−�=5,5

(1)⇒2�−�1,1.2−1,3=5,50,9

d) �2=�3=�5;���=−30

�2=�3=�5=���2.3.5=−3030=−1

 

⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5
 

16 tháng 7 2021

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

16 tháng 7 2021

c, từ đoạn này á

\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)

\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)

12 tháng 7 2023

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}+\dfrac{x+y-3}{z}\\ =\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(z+y+x\right)}{x+y+z}=2\\ \to\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{matrix}\right.\to\left\{{}\begin{matrix}x+y+z=3x-1\\x+y+z=3y-2\\x+y+z=3z+3\end{matrix}\right.\)

Mặt khác \(\dfrac{1}{x+y+z}=2\to x+y+z=\dfrac{1}{2}\)

\(\to\left\{{}\begin{matrix}3x-1=\dfrac{1}{2}\\3y-2=\dfrac{1}{2}\\3z+3=\dfrac{1}{2}\end{matrix}\right.\to\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\)

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)