Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\dfrac{1}{2}\ne\dfrac{-2}{3}\)
nên hệ luôn có nghiệm duy nhất
a: \(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-6m-8\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y-2x-3y=-6m-8-8m+1\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7y=-14m-7\\2x=8m-1-3y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2m+1\\2x=8m-1-6m-3=2m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2m+1\\x=m-2\end{matrix}\right.\)
Đặt \(A=y^2+3x-1\)
\(=\left(2m+1\right)^2+3\left(m-2\right)-1\)
\(=4m^2+4m+1+3m-6-1\)
\(=4m^2+7m-6\)
\(=4\left(m^2+\dfrac{7}{4}m-\dfrac{3}{2}\right)\)
\(=4\left(m^2+2\cdot m\cdot\dfrac{7}{8}+\dfrac{49}{64}-\dfrac{145}{64}\right)\)
\(=4\left(m+\dfrac{7}{8}\right)^2-\dfrac{145}{16}>=-\dfrac{145}{16}\)
Dấu '=' xảy ra khi m=-7/8
b: Đặt B=x^2-y^2
\(=\left(m-2\right)^2-\left(2m+1\right)^2\)
\(=m^2-4m+4-4m^2-4m-1\)
\(=-3m^2-8m+3\)
\(=-3\left(m^2+\dfrac{8}{3}m-1\right)\)
\(=-3\left(m^2+2\cdot m\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{25}{9}\right)\)
\(=-3\left(m+\dfrac{4}{3}\right)^2+\dfrac{25}{3}< =\dfrac{25}{3}\)
Dấu '=' xảy ra khi m=-4/3
\(A=\frac{2x+3y}{2x+y+2}\)
\(\Leftrightarrow A\left(2x+y+2\right)=2x+3y\)
\(\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\)
\(\Leftrightarrow\left(2A\right)^2=\left(2x\left(1-A\right)+y\left(3-A\right)\right)^2\le\left(4x^2+y^2\right)\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)
\(\Leftrightarrow\left(2A\right)^2\le\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)
\(\Leftrightarrow-5\le A\le1\)
y=2a-3
x=-3a+6
de (3a-6)2 +(2a-3)2 =17
13a2 -48a +28=0 => a=....
pt(2)=>x=a-2y thay vô (1) ta đươc 2a-4y+3y=3=>y=2a-3
=>(1)<=>2x+6a-9=3=>x=(12-6a)/2
x^2+y^2=12<=>(2a-3)^2+(6-3a)^2=17
giải pt tìm ra a
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
`{(2x+3y=3+a),(x+2y=a):}`
`<=>{(x=a-2y),(2(a-2y)+3y=3+a):}`
`<=>{(x=a-2y),(2a-4y+3y=3+a):}`
`<=>{(x=a-2y),(y=a-3):}`
`<=>{(x=a-2(a-3)=6-a),(y=a-3):}`
Thay `x;y` vào `x^2+y^2=17` có:
`(6-a)^2+(a-3)^2=17`
`<=>36-12a+a^2+a^2-6a+9=17`
`<=>2a^2-18a+28=0`
`<=>a^2-9a+14=0`
`<=>a^2-2a-7a+14=0`
`<=>(a-2)(a-7)=0`
`<=>` $\left[\begin{matrix} a=2\\ a=7\end{matrix}\right.$
Vậy `a in {2;7}` thì `x^2+y^2=17`