K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

bn đăng hoài và mk cũng rất chú ý tới bài này nhưng bài này k có GTNN, MONG BN XEM LẠI ĐỀ

5 tháng 8 2016

\(B=x^2+xy+y^2-3x-3y+2016\)

\(=x^2+xy-3x+y^2-3y+2016\)

\(=x^2+x\left(y-3\right)+y^2-3y+2016\)

\(=x^2+2.x.\frac{y-3}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y-\left(\frac{y-3}{2}\right)^2+2016\)

\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2-6y+9}{4}+2016\)

\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2}{4}+\frac{3}{2}y-\frac{9}{4}+2016\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}y^2-\frac{3}{2}y+\frac{8055}{4}\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y^2-2y+1\right)+2013=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2013\ge2013\) (với mọi x,y)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{y-3}{2}=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy minB=2013 khi x=y=1

Bài này tìm đc GTNN nhé

NV
30 tháng 10 2019

\(A=x^2-xy+\frac{y^2}{4}+\frac{3}{4}\left(y^2-4y+4\right)+2013\)

\(=\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y-2\right)^2+2013\ge2013\)

\(B\) đề thiếu

\(C\) đề sai, dấu của \(y^2\) là âm thì không tồn tại GTNN

\(P=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

\(2Q=-4x^2-20y^2+12xy+8x-6y+4\)

\(=-\left(4x^2+9y^2+4-12xy-8x+12y\right)-11\left(y^2-\frac{6}{11}y+\frac{36}{121}\right)+\frac{97}{11}\)

\(=-\left(2x-3y-2\right)^2-11\left(y-\frac{3}{11}\right)^2+\frac{97}{11}\le\frac{97}{11}\)

\(\Rightarrow Q\le\frac{97}{22}\)

30 tháng 7 2016

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

30 tháng 7 2016

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1

11 tháng 8 2018

* \(3x+y=1\Rightarrow y=1-3x\)

\(M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=12\left(x^2-\dfrac{1}{2}x+\dfrac{1}{12}\right)=12\left(x^2-2.x.\dfrac{1}{4}+\dfrac{1}{16}\right)+\dfrac{1}{4}=12\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)\(\Rightarrow Min_M=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{4}\)

\(N=x^2+xy+y^2-3x-3y\)

\(4N=4x^2+4xy+4y^2-12x-12y\)

\(4N=\left(4x^2+4xy+y^2\right)-12x-6y+9+3y^2-6y+3-12\)

\(4N=\left(2x+y\right)^2-2.3\left(2x+y\right)+9+3\left(y-1\right)^2-12\)

\(4N=\left(2x+y-3\right)^2+3\left(y-1\right)^2-10\ge-12\)

\(\Rightarrow N\ge-3\)

\(\Rightarrow Min_N=-3\Leftrightarrow x=y=1\)

11 tháng 8 2018

Phùng Khánh Linh ừ ha :))

3 tháng 9 2017

Câu hỏi đâu rồi hả bn 

1 bài toán không thể không có câu hỏi

3 tháng 9 2017

đề là : Tìm gtnn nha

\(H=x^2+xy+y^2-3x-3y+3\)

\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+xy-x-y+1\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)\)

\(=\left[\left(x-1\right)^2+2\left(x-1\right).\frac{1}{2}.\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2\)

\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\text{≥}0\) với mọi x, có GTNN là 0

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

24 tháng 1 2020

\(b,D=x^2+xy+y^2-3x-3y\)

Ta có: \(D+3=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)\)

Đặt: \(\left\{{}\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)

Thì \(C+3=a^2+b^2+ab\ge0\left(\forall a,b\right)\)

\(\Rightarrow Min_C=-3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b\Leftrightarrow x=y=1\)