Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 1 phân số được xác định thì mẫu số của chúng phải khác 0
BÀI LÀM
ĐKXĐ: \(\left(x-1\right)\left(-2x+8\right)\ne0\)
\(\Leftrightarrow\)\(-2\left(x-1\right)\left(x-4\right)\ne0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-1\ne0\\x-4\ne0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy....
Vì \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(4x\ge0=>x\ge0\), do đó PT ban đầu trở thành:
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x< =>3x+1=4x< =>x=1\)
Vậy x=1
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)