Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)
Ta có:
\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt x2 + 10x + 16= t thì:
\(t\left(t+8\right)+16=t^2+8t+16\)
\(=t^2+4t+4t+16=\left(t+4\right)^2\)
\(=\left(x^2+10+20\right)^2\)
https://hoc24.vn/hoi-dap/question/172677.html
Bạn tham khảo link này
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
Đặt \(t=x^2+10x+16\) ta có:
\(t\left(t+8\right)+16=0\)\(\Leftrightarrow t^2+8t+16=0\)
\(\Leftrightarrow\left(t+4\right)^2=0\Leftrightarrow t=-4\Leftrightarrow x^2+10x+16=-4\)
\(\Leftrightarrow x^2+10x+20=0\)
\(\Delta=10^2-4\cdot1\cdot20=20\)\(\Rightarrow x_{1,2}=\frac{-10\pm\sqrt{20}}{2}\)
(x+2)(x+4)(x+6)(x+8)+16=0
(x+2)(x+8)(x+4)(x+6)+16=0
(x2+8x+2x+16)(x2+6x+4x+24)+16=0
(x2+10x+20-4)(x2+10x+20+4)+16=0
(x2+10x+20)2-16+16=0
(x2+10x+20)2=0
x2+10x+20=0
x2+2x5+25-5=0
(x+5)2-(căn bậc 2 của 5)2=0
(x+5-căn bậc 2 của 5)(x+5+căn bậc 2 của 5)=0
Suy ra x+5-căn bậc 2 của 5=0
Tự giải
X+5+căn bâc 2 của 5=0
Tự giải
Vậy ......
=> (x + 2)(x + 8)(x + 4)(x + 6) + 16 =0
=> (x2 + 10x + 16)(x2 + 10x + 24) + 16 = 0
nhân vào , rút gon ta đc :
x4 + 20x3 + 140x2 + 400x + 400 = 0
=> x4 + 100x2 + 400 + 20x2 + 400x + 40x2 =0
=> (x2 + 10x + 20)2 = 0
=> x2 + 10x + 20 = 0
Tính denta ra ta đc : x1 = \(\sqrt{5}-5\) ; x2 = \(-\sqrt{5}-5\)
ẩn phụ đi :v
( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 20
<=> ( t - 4 )( t + 4 ) + 16 = 0
<=> t2 - 16 + 16 = 0
<=> t2 = 0
<=> ( x2 + 10x + 20 )2 = 0
<=> x2 + 10x + 20 = 0
Δ = b2 - 4ac = 102 - 4.1.20 = 100 - 80 = 20
Δ > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-10+\sqrt{20}}{2}=-5+\sqrt{5}\)
\(x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-10-\sqrt{20}}{2}=-5-\sqrt{5}\)
Vậy \(x=-5\pm\sqrt{5}\)
\(\left(x+2\right)\times\left(x+4\right)\times\left(x+6\right)\times\left(x+8\right)+16\)
\(=\left(x+2\right)\times\left(x+8\right)\times\left(x+4\right)\times\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\times\left(x^2+10x+24\right)+16\)
Đặt \(t=x^2+10x+16\), ta được :
\(t\times\left(t+8\right)+16\)
\(=t^2+8t+16\)
\(=\left(t+4^2\right)\)
Thay \(t=x^2+10x+16\), ta được :
\(\left(x^2+10x+16\right)^2\)
\(=\left[\left(x+2\right)\times\left(x+8\right)\right]^2\)
\(=\left(x+2\right)^2\times\left(x+8\right)^2\)
\(=\left(x+2\right)^2\left(x+8\right)^2\)
_ Vậy \(\left(x+2\right)\times\left(x+4\right)\times\left(x+6\right)\times\left(x+8\right)+16\)\(=\left(x+2\right)^2\left(x+8\right)^2\)
1)
=a^4+2a^2+1-a^2
=(a^2+1)^2-a^2
=(a^2-a+1)(a^2+a+1)
2)
=a^4+4b^4-4a^2b^2
=(a^2+2b^2)^2-4a^2b^2
=(a^2-2ab+2b^2)(a^2+2ab+2b^2)
3)
=(8x^2+1)^2-16x^2
=(8x^2-4x+1)(8x^2+4x+1).
4)
=x^5+x^4+x^3-x^3+1
=x^2(x^2+x+1)-(x-1)(x^2+x+1)
=(x^2-x+1)(x^2+x+1)
5).
=x^7-x+x^2+x+1
=x(x^6-1)+x^2+x+1
=x(x^3-1)(x^3+1)+x^2+x+1
=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
=(x^2+x+1)[(x^2-x)(x^3+1)+1]
6)
=x^8-x^2+x^2+x+1
=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
Xong nhóm x^2+x+1 vào.
7)
=x^4-(2x-1)^2
=(x^2-2x+1)(x^2+2x-1)
8)
=(a^8+b^8)^2-a^8b^8
=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).
Ta có:( Bn ghi lại đề nha mình lười ghi đề ah)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+8\right).\left(x+4\right)\left(x+6\right)+16=0\)
\(\Leftrightarrow\)\(\left(x^2+10x+16\right).\left(x^2+10x+24\right)=0\)
\(\Leftrightarrow\)\(\left(x^2+10x+16\right).\left(x^2+10x+16+8\right)=0\)
Đặt \(t=x^2+10x+16\)
\(t.\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=0\\t=-6\end{cases}}\)
\(\left(x+2\right).\left(x+4\right).\left(x+6\right).\left(x+8\right)+16\)
\(=[\left(x+2\right).\left(x+8\right)].[\left(x+4\right).\left(x+6\right)]+16\)
\(=\left(x^2+2x+8x+16\right).\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right).\left(x^2+10x+24\right)+16\)
Ta đặt: \(n=x^2+10x+16\)
\(=n.\left(n+8\right)+16\)
\(\Rightarrow n^2+8n+16\)
\(\Rightarrow n^2+2n.4+4^2\)
\(=\left(n+4\right)^2\)
Ta thay \(n=x^2+10x+16\)
\(=\left(x^2+10x+16+4\right)^2\)
\(=\left(x^2+10+20\right)^2\)