K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(C=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\)

Ta được:

\(C=t\left(t+1\right)-12\)

\(C=t^2+t-12\)

\(C=t^2+4t-3t-12\)

\(C=t\left(t+4\right)-3\left(t+4\right)\)

\(C=\left(t+4\right)\left(x-3\right)\)

\(C=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(C=\left(x^2+x+5\right)\left(x^2-x+2x-2\right)\)

\(C=\left(x^2+x+5\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]\)

\(C=\left(x^2+x+5\right)\left(x-1\right)\left(x+2\right)\)

Vậy....

12 tháng 8 2018

\(\left(x^2+x\right)^2+9x^2+9x+14\)

\(=x^4+2x^3+10x^2+9x+14\)

\(=x^4+x^3+2x^2+x^3+x^2+2x+7x^2+7x+14\)

\(=x^2\left(x^2+x+2\right)+x\left(x^2+x+2\right)+7\left(x^2+x+2\right) \)

\(=\left(x^2+x+2\right)\left(x^2+x+7\right)\)

1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)

\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)

\(=x^2+4x+3-\dfrac{12}{2x+3}\)

 

24 tháng 7 2018

\(2x^3-35x+75=2x^2\left(x+5\right)-10x\left(x+5\right)+15\left(x+5\right)=\left(x-5\right)\left(2x^2-10+15\right) \)

24 tháng 7 2018

c/ \(x^5+x^4+x^3+x^2+x+1\)

\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)\)

\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x^4+x^2+1\right)\)

26 tháng 10 2020

c) x2 + 9x = 10

x2 + 9x - 10 = 0

=> x2 - x + 10x - 10 = 0

=> x(x - 1) + 10(x - 1) = 0

=> (x + 10)(x - 1) = 0

=> \(\orbr{\begin{cases}x=-10\\x=1\end{cases}}\)

d) 2x2 + 9x = 35

=> 2x2 + 9x - 35 = 0

=> 2x2 + 14x - 5x - 35 = 0

=> 2x(x + 7) - 5(x + 7) = 0

=> (x + 7)(2x - 5) = 0

=> \(\orbr{\begin{cases}x=-7\\x=\frac{5}{3}\end{cases}}\)

(x2 - 2x - 1)2 - 5(x2 - 2x - 1) - 14 = 0

=> (x2 - 2x - 1)2 + 2(x2 - 2x - 1) - 7(x2 - 2x - 1) - 14 = 0

=> (x2 - 2x - 1)(x2 - 2x + 1) - 7(x2 - 2x + 1) = 0

=> (x2 - 2x + 1)(x2 - 2x - 8) = 0

=> (x - 1)2 (x - 4)(x + 2) = 0

=> x = 1 hoặc x = 4 hoặc x = -2

e) (2k2 + 5k + 1)2 - 12(2k2 + 5k + 1) + 32 = 0

=> (2k2 + 5x + 1)2 - 4(2k2 + 5k + 1) - 8(2k2 + 5k + 1) + 32 = 0

=> (2k2 + 5k + 1)(2k2 + 5k - 3) - 8(2k2 + 5k - 3) = 0

=> (2k2 + 5k - 3)(2k2 + 5k - 7) = 0

=> (2k2 + 6k - k - 3)(2k2 - 2x + 7k - 7) = 0

=> (k + 3)(2k - 1)(k - 1)(2k + 7) = 0

=> k = -3 hoặc k = 1/2 hoặc k = 1 hoặc k = -7/2

26 tháng 10 2020

1.x2 + 6x = 0 < như này nhỉ ? >

⇔ x( x + 6 ) = 0

⇔ x = 0 hoặc x + 6 = 0

⇔ x = 0 hoặc x = -6

2. x2 - 25x + 250 = 0

⇔ ( x2 - 25x + 625/4 ) + 375/4 = 0

⇔ ( x - 25/2 )2 = -375/4 ( vô lí )

=> Phương trình vô nghiệm

3. x2 + 9x = 10

⇔ x2 + 9x - 10 = 0

⇔ x2 - x + 10x - 10 = 0

⇔ x( x - 1 ) + 10( x - 1 ) = 0

⇔ ( x - 1 )( x + 10 ) = 0

⇔ x - 1 = 0 hoặc x + 10 = 0

⇔ x = 1 hoặc x = -10

4. 2x2 + 9x = 35

⇔ 2x2 + 9x - 35 = 0

⇔ 2x2 + 14x - 5x - 35 = 0

⇔ 2x( x + 7 ) - 5( x + 7 ) = 0

⇔ ( x + 7 )( 2x - 5 ) = 0

⇔ x + 7 = 0 hoặc 2x - 5 = 0

⇔ x = -7 hoặc x = 5/2

5. ( x2 - 2x - 1 )2 - 5( x2 - 2x - 1 ) - 14 = 0

Đặt t = x2 - 2x - 1

bthuc ⇔ t2 - 5t - 14 = 0

          ⇔ t2 - 7t + 2t - 14 = 0

          ⇔ t( t - 7 ) + 2( t - 7 ) = 0

          ⇔ ( t - 7 )( t + 2 ) = 0

          ⇔ ( x2 - 2x - 1 - 7 )( x2 - 2x - 1 + 2 ) = 0

          ⇔ ( x2 - 4x + 2x - 8 )( x - 1 )2 = 0

          ⇔ ( x - 4 )( x + 2 )( x - 1 )2 = 0

          ⇔ x - 4 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0

          ⇔ x = 4 hoặc x = -2 hoặc x = 1

6. ( 2k2 + 5k + 1 )2 - 12( 2k2 + 5k + 1 ) + 32 = 0

Đặt t = 2k2 + 5k + 1

bthuc ⇔ t2 - 12t + 32 = 0

          ⇔ t2 - 8t - 4t + 32 = 0

          ⇔ t( t - 8 ) - 4( t - 8 ) = 0

          ⇔ ( t - 8 )( t - 4 ) = 0

          ⇔ ( 2k2 + 5k + 1 - 8 )( 2k2 + 5k + 1 - 4 ) = 0

          ⇔ ( 2k2 - 2k + 7k - 7 )( 2k2 - k + 6k - 3 ) = 0

          ⇔ ( k - 1 )( 2k + 7 )( 2k - 1 )( k + 3 ) = 0

          ⇔ k = 1 hoặc k = -7/2 hoặc k = 1/2 hoặc k = -3

24 tháng 10 2021

1) \(\Rightarrow x^2+4x+4-x^2+1=9\)

\(\Rightarrow4x=4\Rightarrow x=1\)

2) \(\Rightarrow x\left(2x+7\right)+2\left(2x+7\right)=0\)

\(\Rightarrow\left(2x+7\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=-2\end{matrix}\right.\)

3) \(\Rightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)

\(\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)

14 tháng 1 2018
Khang yêu nghiêm ♥
10 tháng 9 2017

1/ Đặt x2+x=t

=>(x2+x)2+4(x2+x)-12=t2+4t-12=t2+6t-2t-12=t(t+6)-2(t+6)=(t-2)(t+6)=(x2+x-2)(x2+x+6)=(x2-x+2x-2)(x2+x+6)

=[x(x-1)+2(x-1)](x2+x+6)=(x-1)(x+2)(x2+x+6)

2/ Đặt x2+x=t 

=>(x2+x)2+9x2+9x+14=(x2+x)2+9(x2+x)+14=t2+9t+14=t2+2t+7t+14=t(t+2)+7(t+2)=(t+2)(t+7)=(x2+x+2)(x2+x+7)

3/ Đặt x2+5x=t

=>(x2+5x)2+10x2+50x+24=(x2+5x)2+10(x2+5x)+24=t2+10t+24=t2+4t+6t+24=t(t+4)+6(t+4)=(t+4)(t+6)=(x2+5x+4)(x2+5x+6)

=(x2+x+4x+4)(x2+2x+3x+6)=[x(x+1)+4(x+1][x(x+2)+3(x+2)]=(x+1)(x+4)(x+2)(x+3)=(x+1)(x+2)(x+3)(x+4)

20 tháng 3 2020

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

20 tháng 3 2020

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-2x^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)

6 tháng 8 2016

ra nhiều thế với lại ra bài nào khó ấy chứ mấy bài này ra làm gì

23 tháng 2 2023

A) 3x² - x(3x - 5) = 9

3x² - 3x² + 5x = 9

5x = 9

x = 9/5

--------------------

B) 5x² + 9x - 2 = 0

5x² + 10x - x - 2 = 0

(5x² + 10x) - (x + 2) = 0

5x(x + 2) - (x + 2) = 0

(x + 2)(5x - 1) = 0

x + 2 = 0 hoặc 5x - 1 = 0

*) x + 2 = 0

x = -2

*) 5x - 1 = 0

5x = 1

x = 1/5

Vậy x = -2; x = 1/5

---------------------

D) 4(5 - 3x) = 5x - 5

20 - 12x = 5x - 5

-12x - 5x = -5 - 20

-17x = -25

x = 25/17

--------------------

E) 2x² - 11x + 14 = 0

2x² - 4x - 7x + 14 = 0

(2x² - 4x) - (7x - 14) = 0

2x(x - 2) - 7(x - 2) = 0

(x - 2)(2x - 7) = 0

x - 2 = 0 hoặc 2x - 7 = 0

*) x - 2 = 0

x = 2

*) 2x - 7 = 0

2x = 7

x = 7/2

Vậy x = 2; x = 7/2

23 tháng 2 2023

Câu C và F ghi đề bằng công thức đúng lại em