K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2023

\(\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}=\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}\) \(\left(dkxd:x\ne-2\right)\)

\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}-\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left[2\left(3x+1\right)-x\right]=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(6x+2-x\right)=0\)

Bỏ vế đằng trước \(x^2+x+1=0\) do vô nghiệm

\(\Leftrightarrow6x+2-x=0\)

\(\Leftrightarrow5x=-2\)

\(\Leftrightarrow x=-\dfrac{2}{5}\left(tmdk\right)\)

Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)

9 tháng 2 2023

\(\dfrac{\left(x^2+x+1\right).\left(3x+1\right)}{x+2}=\dfrac{\left(x^2+x+1\right).x}{2\left(x+2\right)}\)

hay \(\left(x^2+x+1\right).\dfrac{3x+1}{x+2}=\left(x^2+x+1\right).\dfrac{x}{2\left(x+2\right)}\)

DT
3 tháng 12 2023

\(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)=\left(x+1\right)\left(x-2\right)\)

\(2x\left(x-2\right)-\left(x-2\right)^2=\left(x-2\right)\left[2x-\left(x-2\right)\right]=\left(x-2\right)\left(2x-x+2\right)=\left(x-2\right)\left(x+2\right)\)

\(4x^2-20xy+25y^2=\left(2x\right)^2-2.2x.5y+\left(5y\right)^2=\left(2x-5y\right)^2\)

\(x^2+3x-x-3=x\left(x+3\right)-\left(x+3\right)=\left(x-1\right)\left(x+3\right)\)

\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

\(2y\left(x+2\right)-3x-6=2y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(2y-3\right)\)

12 tháng 2 2018

a)    bạn nhóm 2 cái cuối thành 1 nhóm,  2 cái ở giữa thành 1 nhóm,  rồi đặt ẩn phụ là ra

         \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt  \(x^2+3x=t\)   ta có:

                  \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow\)\(t^2+2t-24=0\)

\(\Leftrightarrow\)\(\left(t-4\right)\left(t+6\right)=0\)

đến đây bn thay trở lại rồi tìm nghiệm nhé

12 tháng 2 2018

a, x(x+3)(x+1)(x+2)-24=0

=> (x^2+3x)(x^2+3x+2)-24=0

đặt x^2+3x=a

ta có : a(a+2)-24=0

=> a^2+2a-24=0 => \(\orbr{\begin{cases}a=4\\a=-6\end{cases}}\) giải ra ta được x^2+3x=4 hay \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

và x^2+3x=-6 => vô nghiệm vậy x=-4 hoặc x=1

18 tháng 7 2017

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\dfrac{5}{12}\)

Vậy:....

\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)

\(\Leftrightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy :....

\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)

\(\Leftrightarrow x^3+27-x^3+4x=15\)

\(\Leftrightarrow4x=15-27=-12\)

\(\Leftrightarrow x=-3\)

vậy : .....

18 tháng 7 2017

Thank You !

31 tháng 10 2022

a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)

\(=x\left[49-\left(2x^2+x\right)^2\right]\)

\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)

b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)

\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)

c: \(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

e: =(x-9)(x+6)

21 tháng 7 2018

\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)

\(\Rightarrow3x^2-3^2-3x^2+15x=1\)

\(\Rightarrow3x^2-9-3x^2+15x=1\)

\(\Rightarrow-9+15x=1\)

\(\Rightarrow15x=-8\)

\(\Rightarrow x=\frac{-8}{15}\)

Câu 1 : 

\(a,x^3-6x^2+9x\)

\(=x\left(x^2-6x+9\right)\)

\(=x\left(x-3\right)\)

b;c tự lm nha !!! : câu 2 cx vậy 

1.b) x2 - 2xy + 3x - 6y = x2 - 2xy + 3x - 3y x 2

    = (x2 - 2xy) + (3x - 3y) x 2

    = 2x (x - y) + 3 (x - y) x 2

    = (x - y) (2x + 3 x 2)

    = (x - y) (2x + 6)

2.

(2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1)

2x4 - 3x3 + 3x2 - 3x + 1      / x2 + 1

2x4          + 2x2                  / 2x2 - 3x + 1

    0 - 3x3 + x2 - 3x + 1      /

       - 3x3         - 3x            /

             0 + x2 + 0  + 1      /

                   x2        + 1      /

                   0

=> đây là phép chia hết

Vậy (2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1) = 2x2 - 3x + 1

(Sai thì thôi)