K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

NV
1 tháng 3 2022

\(P=\left(x^4+y^4+\dfrac{1}{256}+\dfrac{255}{256}\right)\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)\)

\(P=\left(x^4+y^4+\dfrac{1}{256}\right)\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)+\dfrac{255}{256}\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)\)

\(P\ge\left(\dfrac{x^2}{x^2}+\dfrac{y^2}{y^2}+\dfrac{1}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{2}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)^2+1\right)\)

\(P\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{2}\left(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right)^2+1\right)\)

\(P\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{8}\left(\dfrac{4}{x+y}\right)^4+1\right)\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{4^4}{8}+1\right)=\dfrac{297}{8}\)

\(P_{min}=\dfrac{297}{8}\) khi \(x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

18 tháng 3 2021

Xét pt hoành độ giao điểm của y = x2 và y = (2m + 1)x - 2 (x \(\ne\) \(\dfrac{1}{2}\))

x2 = (2m + 1)x - 2

\(\Leftrightarrow\) x2 - (2m + 1)x + 2 = 0

\(\Delta\) = [-(2m + 1)]2 - 4.1.2 = 4m2 + 4m + 1 - 8 = 4m2 + 4m - 7 

Vì pt có 2 nghiệm x1; x2 \(\Rightarrow\) \(\Delta\) \(\ge\) 0 \(\Leftrightarrow\) m + \(\dfrac{1}{2}\) \(\ge\) \(\pm\)\(\sqrt{2}\) \(\Leftrightarrow\) m \(\ge\) \(\pm\sqrt{2}-\dfrac{1}{2}\)

x1 = \(\dfrac{2m+1+\sqrt{4m^2+4m-7}}{2}\)

x2 = \(\dfrac{2m+1-\sqrt{4m^2+4m-7}}{2}\)

|x1| + |x2| = 4 \(\Leftrightarrow\) \(\dfrac{4m+2}{2}=\pm4\) \(\Leftrightarrow\) 2m + 1 = \(\pm4\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{-5}{2}\left(KTM\right)\end{matrix}\right.\)

Vậy ...

x1 = 9x2 \(\Leftrightarrow\) x1 - 9x2 = 0 \(\Leftrightarrow\) x1 + x2 - 10x2 = 0 \(\Leftrightarrow\) 4 - 10x2 = 0

\(\Leftrightarrow\) 10x2 = 4 \(\Leftrightarrow\) x2 = \(\dfrac{2}{5}\) \(\Leftrightarrow\) \(\dfrac{2m+1-\sqrt{4m^2+4m-7}}{2}=\dfrac{2}{5}\)

\(\Leftrightarrow\) 10m + 5 - 5\(\sqrt{4m^2+4m-7}\) = 4 

\(\Leftrightarrow\) 1 + 10m = 5\(\sqrt{4m^2+4m-7}\)

\(\Leftrightarrow\) 1 + 20m + 100m2 = 25(4m2 + 4m - 7)

\(\Leftrightarrow\) 1 + 20m + 100m2 - 100m2 - 100m + 175 = 0

\(\Leftrightarrow\) -180m + 176 = 0

\(\Leftrightarrow\) m = \(\dfrac{44}{45}\) (TM)

Chúc bn học tốt! (Phần x1 = 9x2 ko chắc lắm)

NV
4 tháng 5 2021

1.

Đặt \(\left(x+1\right)^2=t\ge0\) ta được:

\(t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

2.

Phương trình hoành độ giao điểm:

\(-\dfrac{2}{3}x^2=mx-1\Leftrightarrow2x^2+3mx-3=0\) (1)

Do \(ac=-6< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3m}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)

\(x_1+x_2=-5\Leftrightarrow-\dfrac{3m}{2}=-5\)

\(\Leftrightarrow m=\dfrac{10}{3}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 4:

\(x^4y-x^4+2x^3-2x^2+2x-y=1\)

\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)

\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)

\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)

\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)

Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.

Với $(2)$

\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)

\(\Rightarrow x-1\vdots x+1\)

\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)

\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)

\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)

Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 1:

\(x^2+y^2-8x+3y=-18\)

\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)

\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)

\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)

\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)

\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)

\(x\in\mathbb{Z}\Rightarrow x=4\)

Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)

Vậy.......