Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>4x+12<=2x-1
=>2x<=-13
=>x<=-13/2
b: =>x^2-2x+1+4<0
=>(x-1)^2+4<0(loại)
c: =>(x-2+x+3)/(x+3)<0
=>(2x+1)/(x+3)<0
=>-3<x<-1/2
ĐK:\(x\ge\sqrt{8}-1\)
\(\sqrt{x^2+2x-7}+x^2+x-6\le\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x^2+2x-7}-\sqrt{x-1}+x^2+x-6\le0\)
\(\Leftrightarrow\dfrac{x^2+x-6}{\sqrt{x^2+2x-7}+\sqrt{x-1}}+x^2+x-6\le0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(\dfrac{1}{\sqrt{x^2+2x-7}+\sqrt{x-1}}+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(\dfrac{1}{\sqrt{x^2+2x-7}+\sqrt{x-1}}+1\right)\le0\left(1\right)\)
Dễ thấy: \(\dfrac{1}{\sqrt{x^2+2x-7}+\sqrt{x-1}}+1>0\forall x\forall\sqrt{8}-1\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(x-2\right)\left(x+3\right)\le0\)
Mà \(x+3>x-2\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-2\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le2\end{matrix}\right.\)
Ta có :\(|A|\ge B\left(B\ge0\right)\Leftrightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\)
\(|A|\le B\left(B\le0\right)\Leftrightarrow-B\le A\le B\)
Áp dụng vào bài ta có :
a. \(4x^2\le1\Leftrightarrow|2x|\le1\Leftrightarrow-1\le2x\le1\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
Vậy nghiệm của bất phương trình đã cho là \(-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
b.\(x^2+2x+1>0\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow x\ne-1\)(do \(\left(x+1\right)^2\ge0\) với mọi x)
Vậy nghiệm của bất phương trình đã cho là \(x\ne-1\)
c.\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow|x|\ge2\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
Vậy nghiệm của bất phương trình đã cho là \(x\ge2\) hoặc \(x\le-2\)
d.\(-x^2+4x+5>0\Leftrightarrow-\left(x^2-4x+4\right)+9>0\Leftrightarrow\left(x-2\right)^2< 9\Leftrightarrow-3< x-2< 3\Leftrightarrow-1< x< 5\)Vậy nghiệm của bất phương trình đã cho là \(-1< x< 5\)
e. \(x^2-2x+1< 9\Leftrightarrow\left(x-1\right)^2< 9\Leftrightarrow|x-1|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)Vậy nghiệm của bất phương trình đã cho là \(-2< x< 4\)
f. \(2x^2>0\Leftrightarrow x^2>0\Leftrightarrow x\ne0\)( vì \(x^2\ge0\) với mọi x)
Vậy nghiệm của bất phương trình đã cho là \(x\ne0\)
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
Mục tiêu -500 sp mong giúp đỡ