\(x^2+\sqrt{x+2010}=2010\)

giải pt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

đặt \(y=\sqrt{x+2010}\) ta có hệ pt

\(\left\{{}\begin{matrix}x^2+y=2010\\y^2-x=2010\end{matrix}\right.\Rightarrow}x^2+y=y^2-x\Leftrightarrow x^2-y^2+x+y=0\Leftrightarrow\left(x+y\right)\left(x-y+1\right)=0\)

31 tháng 5 2019

thôi khỏi nha các bạn mình làm được rồi

10 tháng 8 2019

ĐK:....

Đặt \(\sqrt{x+2010}=a\ge0\) thì \(a^2-x=2010\)

Kết hợp đề bài ta có hệ: \(\left\{{}\begin{matrix}x^2+a=2010\\a^2-x=2010\end{matrix}\right.\)

Trừ theo vế hai pt của hệ ta được:

\(\left(x^2-a^2\right)+\left(a+x\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+\left(x+a\right)=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

Auto làm nốt. P/s: Em làm đúng ko ta?:V

31 tháng 1 2016

(+) 2010>=x > y > 0 

=> \(\sqrt{x}+\sqrt{2010-y}>\sqrt{2010-x}+\sqrt{y}\left(loại\right)\)

(+) 0< x < y =< 2010

=> \(\sqrt{2010-x}+\sqrt{y}>\sqrt{2010-y}+\sqrt{x}\left(loại\right)\) 

(+) với x = y tm 

thay vào pt (1) giải pt 

31 tháng 1 2016

Giải phưởng trình ra nhé

1 tháng 1 2018

hình như à x+y chứ ko phải là x+1

3 tháng 1 2018

là x+1 nhưng mk giải đc rồi

đk: \(2008\le x\le2010\)

ta có: \(\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2=2+2\sqrt{\left(2010-x\right)\left(x-2008\right)}\)

\(\le2+2010-x+x-2008=4\) (bđt Cauchy)

=> \(VT^2\le4\Rightarrow VT\le2\)

\(x^2-4018x+4036083=\left(x-2009\right)^2+2\ge2\)

Do đó pt có nghiệm khi VT=VP=2 => x=2009 (tm)

26 tháng 8 2016

Đặt a = \(\sqrt{2010-x}\); b = \(\sqrt{x-2008}\)

Từ đó ta có a+ b= 2 (1)

Ta có x2 - 4018x + 4036083 = (x- 2008x) + (-2010x + 4036080) + 3 = - (x - 2008)(2010 - x) + 3

Từ đó PT <=> a + b = - ab + 3 (2)

Từ (1) và (2) ta có (a;b) = (1;1)

=> x = 2009

14 tháng 5 2019

Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)

Ta có: \(\frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow a=b=c=\frac{1}{2}\)

Thay vào tìm x;y;z

24 tháng 9 2019

Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)

Ta có: \frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0a1​−a21​+b1​−b21​+c1​−c21​−43​=0

\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0⇔a21​−a1​+b21​−b1​+c21​−c1​+43​=0

\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0⇔(a21​−a1​+41​)+(b21​−b1​+41​)+(c21​−c1​+41​)=0

\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0⇔(a1​−21​)2+(b1​−21​)2+(c1​−21​)2=0

\Leftrightarrow a=b=c=\frac{1}{2}⇔a=b=c=21​

Thay vào tìm x;y;z

26 tháng 2 2018

\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)\(\left(\left\{{}\begin{matrix}x>2009\\y>2010\\z>2011\end{matrix}\right.\right)\)

\(\Leftrightarrow\dfrac{1}{4}-\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{1}{4}-\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{1}{4}-\dfrac{\sqrt{z-2011}-1}{z-2011}=0\)

\(\Leftrightarrow\dfrac{x-2009-4\sqrt{x-2009}+4}{x-2009}+\dfrac{y-2010-4\sqrt{y-2010}+4}{y-2010}+\dfrac{z-2011-4\sqrt{z-2011}+4}{z-2011}=0\)

Nhận xét: \(\left\{{}\begin{matrix}\dfrac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}\ge0\\\dfrac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}\ge0\\\dfrac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2009}-2=0\\\sqrt{y-2010}-2=0\\\sqrt{z-2011}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2013\\y=2014\\z=2015\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(2013;2014;2015\right)\)

4 tháng 4 2017

đề sai à

4 tháng 4 2017

đề đúng đó

8 tháng 7 2016

a/ ĐKXĐ: \(x\ge-\frac{5}{3}\)

 \(\sqrt{6x+10}=x^2-13x+2\) 

\(\Rightarrow-\left(6x+10\right)-\sqrt{6x+10}+x^2-7x+12=0\)

Đặt \(a=\sqrt{6x+10}\left(a\ge0\right)\), ta được pt:  -a2 - a + x2 - 7x + 12 = 0

Có: \(\Delta=1+4\left(x^2-7x+12\right)=4x^2-28x+49=\left(2x-7\right)^2\)

\(\Rightarrow\sqrt{\Delta}=2x-7\Rightarrow\orbr{\begin{cases}a=x-3\\a=4-x\end{cases}}\)

  • Với a = x - 3 \(\Rightarrow\sqrt{6x+10}=x-3\). Tới đây tự giải nha
  • Với a = 4 - x \(\Rightarrow\sqrt{6x+10}=4-x\). Tới đây tự giải nha
8 tháng 7 2016

oài rốt cuộc vẫn phải làm theo cách tinh den-ta à có cách khác ko vĩ