K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
\(x^2(x-4)(x+4)-(x^2+1)(x^2-1)=x^2(x^2-16)-(x^4-1)\)

\(=x^4-16x^2-x^4+1=1-16x^2=1-(4x)^2=(1-4x)(1+4x)\)

20 tháng 10 2021

\(x^2\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^4-16x^2-x^4+1\)

\(=-16x^2+1\)

18 tháng 6 2017

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)

Đặt \(k=x^2-x+2\) thì biểu thức có dạng

k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)

c)làm tương tự câu a

1 tháng 9 2017

1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24

Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)

hay (x2+7x+6)(x2+7x+16)

2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128

Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)

hay (x2+10x+8)(x2+10x+16)

3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144

Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)

Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

24 tháng 5 2018

1.\(\left(x-5\right).\left(x+5\right)-\left(x+3\right)^2=2x-3\)

\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)=2x-3\)

\(\Leftrightarrow x^2-25-x^2-6x-9=2x-3\)

\(\Leftrightarrow x^2-25-x^2-6x-9-2x+3=0\)

\(\Leftrightarrow-8x-31=0\)

\(\Leftrightarrow x=\dfrac{-31}{8}\)

24 tháng 5 2018

\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)

\(\Leftrightarrow\left(x-4\right)^3-\left(x^3-5^3\right)=\left(x^3+2^3\right)-\left(x+4\right)^3\)

\(\Leftrightarrow\left(x-4\right)^3-x^3+5^3=x^3+2^3-\left(x+4\right)^3\)

\(\Leftrightarrow\left(x^3-12x^2+48x-64\right)-x^3+5^3=x^3+2^3-\left(x^3+12x^2+48x+64\right)\)

\(\Leftrightarrow x^3-12x^2+48x-64-x^3+5^3=x^3+2^3-x^3-12x^2-48x-64\)

\(\Leftrightarrow-12x^2+48x-64+5^3=2^3-12x^2-48x-64\)

\(\Leftrightarrow-12x^2+48x-61=-12x^2-48x-56\)

\(\Leftrightarrow96x=-117\)

\(\Leftrightarrow x=\dfrac{-117}{96}=\dfrac{-39}{32}\)

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

8 tháng 7 2017

\(a,2\left(5x+1\right)-7\left(3x-2\right)=4\left(2x-1\right)+3\left(2-x\right)\)

\(\Leftrightarrow10x+2-21x+14=8x-4+6-3x\)

\(\Leftrightarrow-16x=-14\)

\(\Rightarrow x=\dfrac{7}{8}\)

\(b,-4\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\left(2x-1\right)+x=5x\left(1-x\right)\)

\(\Leftrightarrow-2x+12+7x-\dfrac{7}{2}+x=5x-5x^2\)

\(\Leftrightarrow5x^2+x+\dfrac{17}{2}=0\)

Cái này không biết tách kiểu gì cho vừa nên bạn nhấn máy tính nhé

Mode 5 3 rồi lần lượt điền vào theo thứ tự trên thì

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}+\dfrac{13i}{10}\\x=-\dfrac{1}{10}-\dfrac{13i}{10}\end{matrix}\right.\)

8 tháng 7 2017

an thế nào hả bạn mk ko có bt an hộ mk đi limdim

21 tháng 7 2017

1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6

[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6

4x2 - 9 - 4 . ( x2 + 4x + 4) = 6

4x2 - 9 - 4x2 - 16x - 16 = 6

-16x -25 = 6

x = \(-\dfrac{31}{16}\)

10 tháng 2 2019

a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)

10 tháng 2 2019

b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40

12 tháng 7 2017

\(a,\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)

\(\Leftrightarrow2x^2+4x+4=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+2=0\)

\(\Leftrightarrow2\left(x+1\right)^2=-2\)

\(\Leftrightarrow\left(x+1\right)^2=-1\Rightarrow\) pt vô nghiệm

\(b,\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)

\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)-14x^2=0\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)

\(\Leftrightarrow-8x-17=0\)

\(\Leftrightarrow-8x=17\)

\(\Leftrightarrow x=\dfrac{-17}{8}\)

\(c,\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x^2+4x+4\right)-\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+2\right)^2=\dfrac{5}{2}\)

\(\Rightarrow\left(x+2\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x+2=-\sqrt{5}\\x+2=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}-2\\x=\sqrt{5}-2\end{matrix}\right.\)

12 tháng 7 2017

a) \(\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)

\(\Leftrightarrow2x^2+4x+4=0\Leftrightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}.\sqrt{2}x+\left(\sqrt{2}\right)^2+2=0\) \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2=0\)

ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2\ge2>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm

vậy phương trình vô nghiệm

b) \(\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)

\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)=14x^2\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8=14x^2\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)

\(\Leftrightarrow-8x-17=0\Leftrightarrow-8x=17\Leftrightarrow x=\dfrac{-17}{8}\)

vậy \(x=\dfrac{-17}{8}\)

c) \(\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}x^2-x+\dfrac{1}{2}\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x\right)^2+2.\sqrt{2}.\dfrac{\sqrt{2}}{2}x+\left(\sqrt{2}\right)^2-\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2-\dfrac{5}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2=\dfrac{5}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x+\sqrt{2}=\sqrt{\dfrac{5}{2}}\\\dfrac{\sqrt{2}}{2}x+\sqrt{2}=-\sqrt{\dfrac{5}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x=\sqrt{\dfrac{5}{2}}-\sqrt{2}=\dfrac{\sqrt{10}-2\sqrt{2}}{2}\\\dfrac{\sqrt{2}}{2}x=-\sqrt{\dfrac{5}{2}}-\sqrt{2}=-\dfrac{\sqrt{10}+2\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{matrix}\right.\)

vậy \(x=-2+\sqrt{5};x=-2-\sqrt{5}\)

15 tháng 6 2018

1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)

\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)

⇔-1\(x^2\) - 4x= 1- \(x^2\)

⇔ -1\(x^2\) -4x+ \(x^2\) = 1

⇔-4x=1

⇔ x = \(\dfrac{-1}{4}\)