\(x^2.\left(2x-6\right)-2x^2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

\(x^2.\left(2x-6\right)-2x^2=0\\ \Leftrightarrow2x^2.\left(x-3-1\right)-0\\ \Leftrightarrow2x^2\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)

a) \(\left(x-1\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\2x-4=0\Rightarrow x=2\end{matrix}\right.\)

b) \(\left(x^2+5\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x-5=0\Rightarrow x=5\end{matrix}\right.\)

\(x\in Z\Rightarrow x=5\)

c) \(\left(x^2+5\right)\left(x^2-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x^2-2=0\Rightarrow x=\sqrt{2}\end{matrix}\right.\)

\(x\in Z\Rightarrow x\in\varnothing\)

1: Ta có: |2x-3|=|x+5|

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x+5\\2x-3=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-3-x-5=0\\2x-3+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{8;\frac{-2}{3}\right\}\)

2: Ta có: |4-2x|=|3x|

\(\Leftrightarrow\left[{}\begin{matrix}4-2x=3x\\4-2x=-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4-2x-3x=0\\4-2x+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x+4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=-4\\x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=-4\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{4}{5};-4\right\}\)

3: Ta có: |4x-5|-|2x+1|=0

\(\Leftrightarrow\left|4x-5\right|=\left|2x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=2x+1\\4x-5=-2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-5-2x-1=0\\4x-5+2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\6x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{3;\frac{2}{3}\right\}\)

4: Ta có: \(\left|0.5x-2\right|-\left|x+\frac{2}{3}\right|=0\)

\(\Leftrightarrow\left|0.5x-2\right|=\left|x+\frac{2}{3}\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2=x+\frac{2}{3}\\\frac{1}{2}x-2=-x-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2-x-\frac{2}{3}=0\\\frac{1}{2}x-2+x+\frac{2}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x-\frac{8}{3}=0\\\frac{3}{2}x-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x=\frac{8}{3}\\\frac{3}{2}x=\frac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}:\frac{-1}{2}=\frac{8}{3}\cdot\left(-2\right)=\frac{-16}{3}\\x=\frac{4}{3}:\frac{3}{2}=\frac{4}{3}\cdot\frac{2}{3}=\frac{8}{9}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-16}{3};\frac{8}{9}\right\}\)

9 tháng 3 2020

dễ thế mà ko biết làm ak!

9 tháng 3 2020

1, x2 = 0

=> x=0

2,x2=1

=> x= 1 hoặc x=-1

3,x2=3

=>\(x=\sqrt{3}\)

4,x2=6

=>\(x=\sqrt{6}\)

5,x2=7

=>\(x=\sqrt{7}\)

18 tháng 9 2019

1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)

\(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)

\(\frac{1}{3}x=\frac{11}{15}\)

\(x=\frac{11}{15}:\frac{1}{3}\)

\(x=\frac{11}{5}\)

Vậy \(x=\frac{11}{5}.\)

2) \(2,5:7,5=x:\frac{3}{5}\)

\(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)

\(\frac{1}{3}=x:\frac{3}{5}\)

\(x=\frac{1}{3}.\frac{3}{5}\)

\(x=\frac{1}{5}\)

Vậy \(x=\frac{1}{5}.\)

4) \(\left|x\right|+\left|x+2\right|=0\)

Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)

\(\left|x\right|+\left|x+2\right|=0\)

\(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.

\(x\in\varnothing\)

Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.

10) \(5-\left|1-2x\right|=3\)

\(\left|1-2x\right|=5-3\)

\(\left|1-2x\right|=2\)

\(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)

Chúc bạn học tốt!

18 tháng 9 2019

9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)

\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)

\(10=26:\left(2x-1\right)\)

\(2x-1=26:10\)

\(2x-1=2,6\)

\(2x=2,6+1\)

\(2x=3,6\)

\(x=3,6:2\)

\(x=1,8\)

12 tháng 11 2017

help me

12 tháng 11 2017

I don't no, because I haven't learned this lesson yetkhocroikhocroibucminh

so very very sorry