K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Bài làm của ông a :))

đk: \(-\sqrt[4]{2}\le x\le\sqrt[4]{2}\)

Nếu x = 0 thay vào ta được PT không có nghiệm

Nếu x khác 0 thì ta có: \(x^2\cdot\sqrt[4]{2-x^4}=x^4-x^3+1\)

\(\Leftrightarrow x^2\cdot\sqrt[4]{2-x^4}+x^3=x^4+1\)

\(\Leftrightarrow\sqrt[4]{2-x^4}+x=x^2+\frac{1}{x^2}\)

Đến đây ta sẽ sử dụng 2 BĐT quá là quen thuộc, Cauchy và Bunyakovsky!

Áp dụng Cauchy ta được: \(x^2+\frac{1}{x^2}\ge2\) 

Dấu "=" xảy ra khi: \(x^2=\frac{1}{x^2}\Leftrightarrow x^4=1\Rightarrow x^2=1\)

Mặt khác, áp dụng Bunyakovsky ta có:

\(\left(\sqrt[4]{2-x^4}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{2-x^4}+x^2\right)\)

\(\Rightarrow\left(\sqrt{2-x^4}+x^2\right)\le4\left(\sqrt{2-x^4}+x^2\right)^2\le4\cdot2\cdot\left(2-x^4+x^2\right)=8\cdot2=16\)

\(\Rightarrow\sqrt[4]{2-x^4}+x\le\sqrt[4]{16}=2\)

Dấu "=" xảy ra khi: x = 1

Vậy x = 1

17 tháng 10 2020

            \(x^2.\sqrt[4]{2-x^4}=x^4-x^3+1\left(1\right)\)

Ta có x = 0 không là \(n_0\) của (1)

Với \(x\ne0\), Ta có 

\(\left(1\right)\Leftrightarrow\sqrt[4]{2-x^4}=x^2-x+\frac{1}{x^2}\)

\(\Leftrightarrow x+\sqrt[4]{2-x^4}=x^2+\frac{1}{x^2}\left(2\right)\)

\(VP_{\left(2\right)}=x^2+\frac{1}{x^2}\ge2\)(cô si )

\(VT_{\left(2\right)}=x+\sqrt[4]{2-x^4}\le\sqrt{\left(1+1\right)\left(x^2+\sqrt{2-x^4}\right)}\le\sqrt{2\sqrt{\left(1+1\right)\left(x^2+2-x^4\right)}}\)\(=\sqrt{2.\sqrt{2.2}}=2\)

Do đó \(\left(2\right)\Leftrightarrow\hept{\begin{cases}VP_{\left(2\right)}=2\\VT_{\left(2\right)}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=\sqrt[4]{2-x^4}\\x^2=\sqrt{2-x^4}\end{cases}}\Leftrightarrow x=1\)

Kết luận Vậy phương trình (1) có \(n_0\)duy nhất \(x=1\)

NV
22 tháng 7 2021

Xét trên các miền xác định của các hàm (bạn tự tìm miền xác định)

a.

\(y'=\dfrac{1}{2\sqrt{x-3}}-\dfrac{1}{2\sqrt{6-x}}=\dfrac{\sqrt{6-x}-\sqrt{x-3}}{2\sqrt{\left(x-3\right)\left(6-x\right)}}\)

\(y'=0\Rightarrow6-x=x-3\Rightarrow x=\dfrac{9}{2}\)

\(x=\dfrac{9}{2}\) là điểm cực đại của hàm số

b.

\(y'=1-\dfrac{9}{\left(x-2\right)^2}=0\Rightarrow\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

\(x=-1\) là điểm cực đại, \(x=5\) là điểm cực tiểu

c.

\(y'=\sqrt{3-x}-\dfrac{x}{2\sqrt{3-x}}=0\Rightarrow2\left(3-x\right)-x=0\)

\(\Rightarrow x=2\) 

\(x=2\) là điểm cực đại

NV
22 tháng 7 2021

d.

\(y'=\dfrac{-x^2+4}{\left(x^2+4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(x=-2\) là điểm cực tiểu, \(x=2\) là điểm cực đại

e.

\(y'=\dfrac{-8\left(x^2-5x+4\right)}{\left(x^2-4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

\(x=1\) là điểm cực tiểu, \(x=4\) là điểm cực đại

2 tháng 2 2022

Gọi f(x)=\(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\), g(x)=21-3\(\sqrt{x}\). Ta có f'(x)>0 và g'(x)<0 với mọi x\(\ge\)0, suy ra f(x) và g(x) lần lượt đồng biến và nghịch biến trên (0;+\(\infty\)).

Suy ra phương trình đã cho có nhiều nhất một nghiệm, nghiệm cần tìm là x=1/9.

NV
5 tháng 11 2021

a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)

b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)

Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)

\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)

\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)

c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)

d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)

e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)

6 tháng 11 2021

Em cảm ơn nhiều ạ

NV
18 tháng 1 2022

ĐKXĐ: \(x\ge log_32\)

\(2\sqrt[]{3^x-2}+\sqrt[4]{\left(3^x-2\right)\left(3^x+2\right)}=\sqrt[]{3^x+2}\)

\(\Leftrightarrow2\sqrt[]{\dfrac{3^x-2}{3^x+2}}+\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=1\)

Đặt \(\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=t\ge0\)

\(\Rightarrow2t^2+t=1\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=\dfrac{1}{2}\Rightarrow\dfrac{3^x-2}{3^x+2}=\dfrac{1}{16}\)

\(\Rightarrow3^x=\dfrac{34}{15}\)

\(\Rightarrow x=log_3\left(\dfrac{34}{15}\right)\)