Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét trên các miền xác định của các hàm (bạn tự tìm miền xác định)
a.
\(y'=\dfrac{1}{2\sqrt{x-3}}-\dfrac{1}{2\sqrt{6-x}}=\dfrac{\sqrt{6-x}-\sqrt{x-3}}{2\sqrt{\left(x-3\right)\left(6-x\right)}}\)
\(y'=0\Rightarrow6-x=x-3\Rightarrow x=\dfrac{9}{2}\)
\(x=\dfrac{9}{2}\) là điểm cực đại của hàm số
b.
\(y'=1-\dfrac{9}{\left(x-2\right)^2}=0\Rightarrow\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(x=-1\) là điểm cực đại, \(x=5\) là điểm cực tiểu
c.
\(y'=\sqrt{3-x}-\dfrac{x}{2\sqrt{3-x}}=0\Rightarrow2\left(3-x\right)-x=0\)
\(\Rightarrow x=2\)
\(x=2\) là điểm cực đại
d.
\(y'=\dfrac{-x^2+4}{\left(x^2+4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(x=-2\) là điểm cực tiểu, \(x=2\) là điểm cực đại
e.
\(y'=\dfrac{-8\left(x^2-5x+4\right)}{\left(x^2-4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(x=1\) là điểm cực tiểu, \(x=4\) là điểm cực đại
Gọi f(x)=\(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\), g(x)=21-3\(\sqrt{x}\). Ta có f'(x)>0 và g'(x)<0 với mọi x\(\ge\)0, suy ra f(x) và g(x) lần lượt đồng biến và nghịch biến trên (0;+\(\infty\)).
Suy ra phương trình đã cho có nhiều nhất một nghiệm, nghiệm cần tìm là x=1/9.
a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)
b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)
Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)
\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)
\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)
c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)
d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)
e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)
ĐKXĐ: \(x\ge log_32\)
\(2\sqrt[]{3^x-2}+\sqrt[4]{\left(3^x-2\right)\left(3^x+2\right)}=\sqrt[]{3^x+2}\)
\(\Leftrightarrow2\sqrt[]{\dfrac{3^x-2}{3^x+2}}+\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=1\)
Đặt \(\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=t\ge0\)
\(\Rightarrow2t^2+t=1\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=\dfrac{1}{2}\Rightarrow\dfrac{3^x-2}{3^x+2}=\dfrac{1}{16}\)
\(\Rightarrow3^x=\dfrac{34}{15}\)
\(\Rightarrow x=log_3\left(\dfrac{34}{15}\right)\)
Bài làm của ông a :))
đk: \(-\sqrt[4]{2}\le x\le\sqrt[4]{2}\)
Nếu x = 0 thay vào ta được PT không có nghiệm
Nếu x khác 0 thì ta có: \(x^2\cdot\sqrt[4]{2-x^4}=x^4-x^3+1\)
\(\Leftrightarrow x^2\cdot\sqrt[4]{2-x^4}+x^3=x^4+1\)
\(\Leftrightarrow\sqrt[4]{2-x^4}+x=x^2+\frac{1}{x^2}\)
Đến đây ta sẽ sử dụng 2 BĐT quá là quen thuộc, Cauchy và Bunyakovsky!
Áp dụng Cauchy ta được: \(x^2+\frac{1}{x^2}\ge2\)
Dấu "=" xảy ra khi: \(x^2=\frac{1}{x^2}\Leftrightarrow x^4=1\Rightarrow x^2=1\)
Mặt khác, áp dụng Bunyakovsky ta có:
\(\left(\sqrt[4]{2-x^4}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{2-x^4}+x^2\right)\)
\(\Rightarrow\left(\sqrt{2-x^4}+x^2\right)\le4\left(\sqrt{2-x^4}+x^2\right)^2\le4\cdot2\cdot\left(2-x^4+x^2\right)=8\cdot2=16\)
\(\Rightarrow\sqrt[4]{2-x^4}+x\le\sqrt[4]{16}=2\)
Dấu "=" xảy ra khi: x = 1
Vậy x = 1
\(x^2.\sqrt[4]{2-x^4}=x^4-x^3+1\left(1\right)\)
Ta có x = 0 không là \(n_0\) của (1)
Với \(x\ne0\), Ta có
\(\left(1\right)\Leftrightarrow\sqrt[4]{2-x^4}=x^2-x+\frac{1}{x^2}\)
\(\Leftrightarrow x+\sqrt[4]{2-x^4}=x^2+\frac{1}{x^2}\left(2\right)\)
\(VP_{\left(2\right)}=x^2+\frac{1}{x^2}\ge2\)(cô si )
\(VT_{\left(2\right)}=x+\sqrt[4]{2-x^4}\le\sqrt{\left(1+1\right)\left(x^2+\sqrt{2-x^4}\right)}\le\sqrt{2\sqrt{\left(1+1\right)\left(x^2+2-x^4\right)}}\)\(=\sqrt{2.\sqrt{2.2}}=2\)
Do đó \(\left(2\right)\Leftrightarrow\hept{\begin{cases}VP_{\left(2\right)}=2\\VT_{\left(2\right)}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=\sqrt[4]{2-x^4}\\x^2=\sqrt{2-x^4}\end{cases}}\Leftrightarrow x=1\)
Kết luận Vậy phương trình (1) có \(n_0\)duy nhất \(x=1\)