Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x=t\)
\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)
\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)
Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)
\(\Delta=7^2-4.11=5\)
\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)
2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x=t\)
\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)
\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)
Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)
\(\Delta=\left(-8\right)^2-4.11=20\)
\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)
a) = x2 + 2x + 3x + 6 = x( x + 2 ) + 3( x + 2 ) = ( x + 2 )( x + 3 )
b) = x2 - x + 4x - 4 = x( x - 1 ) + 4( x - 1 ) = ( x - 1 )( x + 4 )
c) = ( x2 - 10x + 25 ) - 9 = ( x - 5 )2 - 32 = ( x - 8 )( x - 2 )
d) = 6x2 - 15x + 8x - 20 = 3x( 2x - 5 ) + 4( 2x - 5 ) = ( 2x - 5 )( 3x + 4 )
a) x2 + 5x + 6 = x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2) = (x + 3)(x + 2)
b) x2 + 3x - 4 = x2 - x + 4x - 4 = x(x - 1) + 4(x - 1) = (x + 4)(x - 1)
c) x2 - 10x + 16 = x2 - 2x - 8x + 16 = x(x - 2) - 8(x - 2) = (x - 8)(x - 2)
d) 6x2 - 7x - 20 = 6x2 + 8x - 15x - 20 = 2x(3x + 4) - 5(3x + 4) = (2x - 5)(3x + 4)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
g) (x+2)(x+3)(x+4)(x+5)-24 = \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
=\(\left[x^2+7x+10\right]\left[x^2+7x+12\right]\)
đặt \(x^2+7x+10=a\)
ta có \(a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-5^2\)
\(=\left(a+1-5\right)\left(a+1+5\right)\)
\(=\left(a-4\right)\left(a+6\right)\)
\(\Rightarrow\) \(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
a) = (x +5)2 - 22 = (x+5 -2)(x+5 +2) = (x+3)(x+7)
b) = x(x2 -1) -6(x-1)= x(x+1)(x-1) -6(x-1) = (x-1)(x(x+1)-6)
= (x^4-4x^3)+(3x^3-12x^2)+(2x^2-8x)-(2x-8)
= x^3.(x-4)+3x^2.(x-4)+2x.(x-4)-2.(x-4)
= (x-4).(x^3+3x^2+2x-2)
Tk mk nha
(x2 + 6x + 5)(x2 - 10x + 21) - 20
= (x2 + x + 5x + 5)(x2 - 3x - 7x + 21) - 20
= (x + 1)(x + 5)(x - 3)(x - 7) - 20
= (x2 -2x - 3)(x2 - 2x- 35) - 20
Đặt x2 - 2x - 19 = a
=> (a + 16)(a - 16) - 20 = a2 - 256 - 20 = a2 - 276
= \(\left(a-2\sqrt{69}\right)\left(a+2\sqrt{69}\right)\)
= \(\left(a^2-2x-19-2\sqrt{69}\right)\left(x^2-2x-19+2\sqrt{69}\right)\)