Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\\\sqrt{x^2+x+2}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\b=2a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=\sqrt{x^2+x+2}\\2\sqrt{2x+3}=\sqrt{x^2+x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=2x+3\\x^2+x+2=8x+12\end{matrix}\right.\)
\(ĐK:x\ge-\frac{3}{2}\)
Ta có:
\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)
\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{2x^3+5x^2+7x+6}\)
\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{\left(x^2+x+2\right)\left(2x+3\right)}\)
Đặt \(\sqrt{x^2+x+2}=a;\sqrt{2x+3}=b\)
Khi đó: \(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\sqrt{x^2+x+2}=\sqrt{2x+3}\left(hoac\right)\sqrt{x^2+x+2}=2\sqrt{2x+3}\)
Với \(\sqrt{x^2+x+2}=\sqrt{2x+3}\Rightarrow x^2+x+2=2x+3\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2};x=\frac{1-\sqrt{5}}{2}\)Tự đối chiếu điều kiện xác định -,-
\(\sqrt{x^2+x+2}=2\sqrt{2x+3}\Rightarrow x^2+x+2=4\left(2x+3\right)\Leftrightarrow x^2-7x-10=0\)
Tới đây bí rồi huhu
bình phương hai vế rồi rút gọn, phân tích thành nhân tử
\(\left(x+1\right)\left(x^3-9x^2+7x+10\right)=0\)0
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
\(x=1+1.\sqrt[3]{2}+\sqrt[3]{2}^2=\dfrac{\sqrt[3]{2}^3-1^3}{\sqrt[3]{2}-1}=\dfrac{1}{\sqrt[3]{2}-1}\)
\(\Leftrightarrow\dfrac{1}{x}+1=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x+1\right)^3=2x^3\Leftrightarrow x^3-3x^2-3x-1=0\).
Do đó \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(M=\dfrac{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(4x^2+8x+4\right)}-6}{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(x^2-4x+4\right)}}\)
\(M=\dfrac{\sqrt{\left(2x+2\right)^2}-6}{\sqrt{\left(x-2\right)^2}}=\dfrac{2x+2-6}{x-2}=2\). (Do \(x>2\))