Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
a ) \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
b ) \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a) \(x^2+5x+6\\ =x^2+5x+\frac{25}{4}-\frac{1}{4}\\ =\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\\ \)
b) \(x^2\left(1-x^2\right)-4+4x^2\\ =x^2\left(1-x^2\right)-4\left(1-x^2\right)\\ =\left(x^2-4\right)\left(1-x^2\right)\\ =\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a/ \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
\(=\left(x+3\right)\left(x+2\right)\)
b/ \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1-x\right)\)
=(x3+53)-(x2+5x)
=(x+5)(x2-5x+25)-x(x+5)
=(x+5)(x2-5x+25-x)
=(x+5)(x2-6x+25)
Làm cách khác :D
x3 - x2 - 5x + 125
Thử với x = -5 ta được :
(-5)3 - (-5)2 - 5.(-5) + 125 = 0
Vậy -5 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho ( x + 5 )
Thực hiện phép chia x3 - x2 - 5x + 125 cho ( x + 5 ) ta được x2 - 6x + 25
Vậy x3 - x2 - 5x + 125 = ( x + 5 )( x2 - 6x + 25 )
ai biêt slamf bài này ko ạ xin hãy chỉ mk với
Thực hiện phép nhan rồi tính giá trị của biểu thức
x(x + y)+ y(x - y) tại x= -8 và y= 7
nếu ai giải đc mk c.ơn rất nhiều ạ
đây là toán lớp 8 ạ
\(x^2+5x+6=\left(x^2+2x\right)+\left(3x+6\right)=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)