K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 1 2024

\(\Delta=25-4\left(3m-1\right)=29-12m\ge0\Rightarrow m\le\dfrac{29}{12}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=3m-1\end{matrix}\right.\)

\(x_1^3+x_2^3+3x_1x_2=-35\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_2=-35\)

\(\Leftrightarrow\left(-5\right)^3+15\left(3m-1\right)+3\left(3m-1\right)=-35\)

\(\Leftrightarrow18\left(3m-1\right)=90\)

\(\Rightarrow m=2\) (thỏa mãn)

\(\text{Δ}=5^2-4\cdot1\cdot\left(3m-1\right)\)

\(=25-4\left(3m-1\right)\)

\(=25-12m+4=-12m+29\)

Để phương trình (1) có hai nghiệm thì Δ>=0

=>-12m+29>=0

=>-12m>=-29

=>\(m< =\dfrac{29}{12}\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-5}{1}=-5\\x_1x_2=\dfrac{c}{a}=\dfrac{3m-1}{1}=3m-1\end{matrix}\right.\)

\(x_1^3+x_2^3+3x_1x_2=-35\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_2=-35\)

=>\(\left(-5\right)^3-3\cdot\left(3m-1\right)\cdot\left(-5\right)+3\cdot\left(3m-1\right)=-35\)

=>\(-125+15\left(3m-1\right)+9m-3=-35\)

=>\(-125+45m-15+9m-3=-35\)

=>54m-143=-35

=>54m=108

=>m=2(nhận)

6 tháng 6 2021

 Để ptrinh có hai nghiệm x1 ; x2 =>  \(\Delta=25-4.\left(3m-1\right)=29-12m\ge0\)

=> \(m\le\frac{29}{12}\)

Theo viet \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=3m-1\end{cases}}\) 

=> \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(-5\right)^2-4.\left(3m-1\right)=29-12m\)

=> \(x_1-x_2=\sqrt{29-12m}\)

Có : \(x_1^3-x_2^3+3x_1x_2=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)+3x_1x_2\)

\(=\left(x_1-x_2\right)\left(x_1^2-2x_1x_2+x_2^2+3x_1x_2\right)+3x_1x_2\)

\(=\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+3x_1x_2\)

\(=\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+3x_1x_2\)

\(\Rightarrow\sqrt{29-12m}\left[\left(-5\right)^2-3m+1\right]+3.\left(3m-1\right)=75\)

\(\Rightarrow\sqrt{29-12m}\left(26-3m\right)+9m-3=75\)

\(\Rightarrow\sqrt{\left(29-12m\right)\left(26-3m\right)^2}=78-9m\)

\(\Rightarrow\left(29-12m\right)\left(26-3m\right)^2=6084-1404m+81m^2\)

\(\Rightarrow108m^3-2052m^2+11232m-13520=0\)

=> \(\orbr{\begin{cases}m=\frac{5}{3}\left(tm\right)\\m=\frac{26}{3}\left(ktm\right)\end{cases}}\)

sry bạn làm ngắn hơn cũng đc chứ mik làm dài 

9 tháng 5 2022
9 tháng 5 2022

không nhìn được bạn ơi

 

4 tháng 7 2020

Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\) 

Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)

\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)

\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)

\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)

\(< =>12m+6+36-4m-2>0\)

\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)

Vậy để m thỏa mãn đk trên thì \(m>-5\)

mình sửa đề trên là > 0 nhé 

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

16 tháng 1 2019

Pt có nghiệm khi \(\Delta\ge0\)

                        \(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)

                       \(\Leftrightarrow m^2-2m+1-20m+20\ge0\)

                        \(\Leftrightarrow m^2-22m+21\ge0\)

                        \(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)

Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)

\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)

\(\Leftrightarrow1-2m+m^2=25m-25\)

\(\Leftrightarrow m^2-27m+26=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)

Vậy .........

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.