Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)\)
b: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3 hoặc x=2
câu a bạn sai đề nha
b)
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)
\(2\left(x^3+x^2+x\right)=2\left(x^4+x^2+1\right)\)
\(x^4-x^3+1-x=0\)
\(x^3\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^3-1\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\x^3-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
a) \(x^3\)+\(x^2\)=36
\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)
\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)
\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)
Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)
- \(x-3=0\) \(\Leftrightarrow\) \(x=3\)
- \(x^2+4x+12=0\) (phương trình vô nghiệm)
Vậy \(x=3\)
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
a) \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^4+10x^2+25x^2-2x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x-24=0\)
\(\Leftrightarrow\left(x^3+11x^2+34x+24\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+10x+24\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+6\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x+4=0\text{ hoặc }x+6=0\text{ hoặc }x-1=0\text{ hoặc }x+1=0\)
\(\Leftrightarrow x=-4\text{ hoặc }x=-6\text{ hoặc }x=\pm1\)
Vậy: nghiệm của phương trình là: x = -4; -6; +-1
b) \(\left(x^3+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow x^5+x^4+2x^3+x^3+x^2+2x+x^2+x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2-12=0\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x-10=0\)
\(\Leftrightarrow\left(x^4+2x^3+5x^2+7x+10\right)\left(x-1\right)=0\)
vì: \(x^4+2x^3+5x^2+7x+10\ne0\) nên:
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy: nghiệm của phương trình là: x = 1
\(\left(x^2+5x\right)+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)-10\left(x^2+5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(1-10\right)+14=0\)
\(\Leftrightarrow\left(-9\right)\left(x^2+5x\right)+14=0\)
\(\Leftrightarrow-9\left(x^2+5x\right)=-14\)
\(\Leftrightarrow x^2+5x=\frac{14}{9}\)
\(\Leftrightarrow x=0,2938.....\)
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Rightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right).1+1-25=0\)
\(\Rightarrow\left(x^2-5x+1\right)^2-25=0\)
\(\Rightarrow\left(x^2-5x+1+5\right)\left(x^2+5x+1-5\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x^2-5x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x-4=0\end{cases}}\)
TH1 : \(x^2-5x+6=0\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Th2 : \(x^2-5x+4=0\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
b, Ta có : \(\left(x^2-x\right)^2-2=x^2-x\)
\(\Leftrightarrow t^2-2=t\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x=2\\x^2-x=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\x=-1\\x\notinℝ\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(x_1=-1;x_2=2\)
c, Ta có : \(x.\left(x+1\right).\left(x-1\right).\left(x+2\right)=24\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^3-x\right).\left(x+2\right)=24\)
\(\Leftrightarrow x^4+2.x^3-x^2-2.x=24\)
\(\Leftrightarrow x^4+2.x^3-x^2-2.x-24=0\)
\(\Leftrightarrow x^4-2.x^3+4.x^3-8.x^2+7.x^2-14.x+12.x-24=0\)
\(\Leftrightarrow x^3.\left(x-2\right)+4.x^2.\left(x-2\right)+7.x.\left(x-2\right)+12.\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x^3+4.x^2+x^2+7.x+12\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x^3+3.x^2+x^2+3.x+4.x+12\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left[x^2.\left(x+3\right)+x.\left(x+3\right)+4.\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+3\right).\left(x^2+x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\x+3=0\\x^2+x+4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\\x\notinℝ\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy \(x_1=-3;x_2=2\)