K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2020

Ta có : x2 + 4x - y2 + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

4 tháng 11 2020

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

9 tháng 8 2017

a, 7x^3 + 5 ( x - y )^2 v- 7y^3
= 7 ( x^3 - y^3 ) + 5 ( x-y )^2
= 7 ( x - y )^3 + 5 ( x-y ) ^2
= [ 7 ( x- y ) + 5 ] ( x-y) ^2

4 tháng 12 2018

a. \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)

b. \(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x+y-2\right)\left(x-y-2\right)\)

c. \(\left(x^2+9\right)^2-36x^2=\left(x^2+6x+9\right)\left(x^2-6x+9\right)=\left(x+3\right)^2\left(x-3\right)^2\)

d. \(25-x^2+2xy-y^2=25-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)

còn lại làm tương tự

4 tháng 12 2018

a) \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

b) \(x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)

c) \(\left(x^2+9\right)^2-36x^2=\left(x^2+9\right)^2-\left(6x\right)^2=\left(x^2-6x+9\right)\left(x^2+6x+9\right)\)

\(=\left(x-3\right)^2\left(x+3\right)^2\)

d) \(25-x^2+2xy-y^2=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)

e) \(x^3-4x^2+4x-1=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1-4x\right)=\left(x-1\right)\left(x^2-3x+1\right)\)

f) \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3-x+y\right)\)

g) \(2x^2-9x+10=2x^2-4x-5x+10=2x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(2x-5\right)\)

h) \(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)

i) \(x^3-3x^2+2=x^3-2x^2-x^2+2=x^2\left(x-1\right)-2\left(x^2-1\right)\)

\(=x\left(x-1\right)-2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x-2x-2\right)\)

k) \(x^4+4=\left(x^2\right)^2+2\cdot x^2\cdot2+2^2-2\cdot x^2\cdot2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

14 tháng 6 2017

1) \(-4x^5\left(x^3-4x^2+7x-3\right)\)

\(=-4x^8+16x^7-28x^6+12x^5\)

2) \(3x^4\left(-2x^3+5x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)

\(=-6x^7+15x^6-2x^5+x^4\)

3) \(-5x^2y^4\left(3x^2y^3-2x^3y^2-xy\right)\)

\(=-15x^4y^7+10x^5y^6+5x^3y^5\)

4) \(4x^3y^2\left(-2x^2y+4x^4-3y^2\right)\)

\(=-8x^5y^3+16x^7y^2-12x^3y^4\)

24 tháng 10 2018

mình học lớp 4

28 tháng 7 2019

GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI

28 tháng 7 2019

GIÚP VỚI

18 tháng 7 2018

a) (x+y+4)(x+y-4) = (x+y)2 - 42

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk tốt

18 tháng 7 2018

\(\left(x+y+4\right)\left(x+y-4\right)=\) \(\left(x+y\right)^2-4^2\)

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk tốt

30 tháng 10 2019

Câu 1 : Tìm x :

1. \(A=x^2+4x-2\)

\(A=x^2+2.x.2+2^2-2^2-2\)

\(A=\left(x^2+4x+2^2\right)-4-2\)

\(A=\left(x+2\right)^2-6\)

\(\left(x+2\right)^2-6\ge-6\)

MIn A= -6 khi \(\left(x+2\right)^2=0\)

=> \(x+2=0hayx=-2\)

Vậy x=2

những câu tiếp theo làm tg tự như thế nhé

30 tháng 10 2019

Câu 1:

a) Ta có: \(A=x^2+4x-2\)

\(=x^2+4x+4-6\)

\(=\left(x+2\right)^2-6\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: x=-2

b) Ta có: \(B=2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)

\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)

\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: x=1

c) Ta có: \(C=x^2+y^2-4x+2y+5\)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y+1\right)^2\ge0\forall y\)

Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy: x=2 và y=-1

Câu 2:

a) Ta có: \(A=-x^2+6x+5\)

\(=-\left(x^2-6x-5\right)\)

\(=-\left(x^2-6x+9-14\right)\)

\(=-\left[\left(x^2-6x+9\right)-14\right]\)

\(=-\left[\left(x-3\right)^2-14\right]\)

\(=-\left(x-3\right)^2+14\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3

b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)

\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)

Ta có: \(\left(3y-1\right)^2\ge0\forall y\)

\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)

Từ (1) và (2) suy ra

\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\)\(y=\frac{1}{3}\)

Câu 3:

a) Ta có: \(x^2+y^2-2x+4y+5=0\)

\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: x=1 và y=-2

b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy: x=3 và y=-2