Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(2^{30}=\left(2^3\right)^{10}=8^{10}< 9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(3^{30}=3^{20}.3^{10}< 3^{20}.4^{10}=3^{20}.\left(2^2\right)^{10}=3^{20}.2^{20}=\left(3.2\right)^{20}=6^{20}\)
\(4^{30}=4^{20}.4^{10}=4^{20}.\left(2^2\right)^{10}=4^{20}.2^{20}=\left(4.2\right)^{20}=8^{20}\)
nên \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
Ta có : 3.24^10=3.(3.2^3)^10=3^11.2^30=3^11.4^15<4^15.4^15=4^30
⇒2^30+3^30+4^30>3.24^10
Ta có:
\(3.24^{10}=3^{11}.4^{15}\)
\(\rightarrow4^{30}=4^{15}.4^{15}\)
\(4^{15}>3^{11}\)( vì phần nguyên bé và mũ cũng bé nên ta có:4\(^{15}\)>3\(^{11}\))
\(\rightarrow3.24^{10}< 4^{30}< 2 ^{30}+3^{20}+4^{30}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
Ta có :
3.2410=3.(3.23)10=311.230=311.415<415.415=430
=> 230+330+430>3.2410
2^30+3^30+4^30 = 4^15+27^10+64^10> 4^15+24^10+2.24^10> 3.24^10
\(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}\)
Mà \(8^{10}.3^{11}=8^{10}.3^{10}.3=4^{10}.3\)
Nên \(4^{30}>3.24^{10}\)
Dễ thấy tổng \(2^{30}+3^{30}+4^{30}\) có 3 số hạng, và chỉ riêng số hạng 430 đã lớn hơn 2410.3
Vậy 230+330+430>3.2410