K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

\(x^2+2xy+y^2-xz-zy\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

9 tháng 10 2016

\(\left(x+2\right)\left(x-2\right)-x\left(x-3\right)\)

\(=x^2-4-x^2+3x=3x-4\)

9 tháng 7 2018

\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)

\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)

9 tháng 7 2018

\(x^2+4y^2+2x-y+2\)

\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)

\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)

Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)

Tham khảo nhé~

23 tháng 4 2018

Ta có : 

\(A=\frac{x^2+x+1}{\left(x+1\right)^2}\)

\(A=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}\)

\(A=\frac{x^2+2x+1}{\left(x+1\right)^2}+\frac{-x-1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)

\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{x+1}{\left(x+1\right)^2}+\frac{1^2}{\left(x+1\right)^2}\)

\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)

Đặt \(a=\frac{1}{x+1}\) ta có : 

\(A=1-a+a^2\)

\(A=a^2-a+1\)

\(A=\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\)\(a-\frac{1}{2}=0\)

\(\Leftrightarrow\)\(a=\frac{1}{2}\)

Do đó : 

\(a=\frac{1}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{2}=\frac{1}{x+1}\)

\(\Leftrightarrow\)\(x+1=2\)

\(\Leftrightarrow\)\(x=1\)

Vậy GTNN  của \(A\) là \(\frac{3}{4}\) khi \(x=1\)

Chúc bạn học tốt ~ 

12 tháng 10 2021

\(2x^2+y^2+2x-2xy+5-4y=0\)

\(\Leftrightarrow\left[y^2-2y\left(x+2\right)+\left(x+2\right)^2\right]+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(y-x-2\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y-x-2=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

\(S=\left(x+2\right)^2+\left(y-1\right)^2=\left(1+2\right)^2+\left(3-1\right)^2\)

\(=3^2+2^2=13\)

30 tháng 12 2019

Thôi làm thế này đi:3

\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)

Áp dụng BĐT Cosi ta có:

\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

30 tháng 12 2019

\(A=-\frac{2xy}{1+xy}=-2xy-2\)

Áp dụng BĐT Cosi ta có:

\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:

\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )

\(\Rightarrow A\ge-1-2=-3\)

dấu "=" xảy ra khi:

\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )

vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

1: Xét tứ giác BHCK có 

CH//BK

BH//CK

Do đó: BHCK là hình bình hành

Suy ra: Hai đường chéo BC và HK cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

2: Gọi giao điểm của IH và BC là O

Suy ra: IH\(\perp\)BC tại O và O là trung điểm của IH

Xét ΔHIK có

O là trung điểm của HI

M là trung điểm của HK

Do đó: OM là đường trung bình của ΔHIK

Suy ra: OM//IK 

hay BC//IK

mà BC\(\perp\)IH

nên IH\(\perp\)IK

Xét ΔHOC vuông tại O và ΔIOC vuông tại O có

OC chung

HO=IO

Do đó: ΔHOC=ΔIOC

Suy ra: CH=CI

mà CH=BK

nên CI=BK

Xét tứ giác BCKI có IK//BC

nên BCKI là hình thang

mà CI=BK

nên BCKI là hình thang cân