Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
\(\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)
\(\left(x-y\right)\left(x-y\right)=x^2-xy-xy+y^2=x^2-2xy+y^2\)
\(\left(x-z\right)\left(x+z\right)=x^2+xz-xz-z^2=x^2-z^2\)
\(\left(x+y-2xy\right)\left(x+y+2xy\right)\)
\(=\left(x+y\right)^2-4x^2y^2\)
\(=x^2+2xy+y^2-4x^2y^2\)
a) \(\dfrac{2x^2-2xy}{x^2+x-xy-y}\) \(\left(x\ne y;x\ne-1\right)\)
\(=\dfrac{2x\left(x-y\right)}{x\left(x+1\right)-y\left(x+1\right)}\)
\(=\dfrac{2x\left(x-y\right)}{\left(x-y\right)\left(x+1\right)}\)
\(=\dfrac{2x}{x+1}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Ta có
(A):
16 x 4 ( x – y ) – x + y = 16 x 4 ( x – y ) – ( x – y ) = ( 16 x 4 – 1 ) ( x – y ) = [ ( 2 x ) 4 – 1 ] ( x – y ) = [ ( 2 x ) 2 – 1 ] [ ( 2 x ) 2 + 1 ] ( x – y ) = ( 2 x – 1 ) ( 2 x + 1 ) ( 4 x 2 + 1 ) ( x – y )
Nên (A) sai
Và (B):
2 x 3 y – 2 x y 3 – 4 x y 2 – 2 x y = 2 x y ( x 2 – y 2 – 2 y – 1 ) = 2 x y [ x 2 – ( y 2 + 2 y + 1 ) ] = 2 x y [ x 2 – ( y + 1 ) 2 ] = 2 x y ( x – y – 1 ) ( x + y + 1 ) .
Nên (B) sai.
Vậy cả (A) và (B) đều sai.
Đáp án cần chọn là: C
\(x^2+2xy+y^2-x-y\\=(x^2+2xy+y^2)-(x+y)\\=(x+y)^2-(x+y)\\=(x+y)(x+y-1)\\\text{#}Toru\)
\(x^2\) + 2\(xy\) + y2 - \(x\) - y
= (\(x\) + y)2 - (\(x\) + y)
= (\(x\) + y).(\(x\) + y - 1)