Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x\left(8x-2\right)-8x^2+12=0\)
\(\Leftrightarrow8x^2-2x-8x^2+12=0\)
\(\Leftrightarrow-2x+12=0\)
\(\Leftrightarrow-2x=-12\)
\(\Leftrightarrow x=6\)
b,\(x\left(4x-4\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x-1=0\)
\(\Leftrightarrow-9x=1\)
\(\Leftrightarrow x=\frac{-1}{9}\)
\(x^2\left(2x+3\right)-8x-12=0\)
\(\Rightarrow x^2\left(2x+3\right)-4\left(2x+3\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=-2\\x=-\frac{3}{2}\end{cases}}\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(\Leftrightarrow x^2\left(2x-3\right)+\left(8x-12\right)=0\)
\(\Leftrightarrow x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow x^2+4=0\)hoặc \(2x-3=0\)
\(TH:x^2+4=0\Rightarrow x^2=-4\)( vô nghiệm )
\(TH:2x-3=0\Rightarrow x=\frac{3}{2}\)( thỏa mãn )
Vậy \(x=\frac{3}{2}\)
\(a,9x^2-49=0\)
\(9x^2=49\)
\(x^2=\frac{49}{9}=\frac{7^2}{3^2}=\frac{\left(-7\right)^2}{\left(-3\right)^2}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
vậy ...
\(c,x^3-16x=0\)
\(x.\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4,x=-4\end{cases}}\)
vậy ...
a.
\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b.
\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)
c.
\(\Leftrightarrow x^2\left(2x-3\right)+4\left(2x-3\right)=0\Leftrightarrow\left(x^2+4\right)\left(2x-3\right)=0\)
x^2+4>0 nên 2x-3=0 suy ra x=3/2
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
\(a.2\left(x+3\right)-x\left(x+3\right)=0\)
\(\text{⇔}\left(x+3\right)\left(2-x\right)=0\)
\(\text{⇔}x=-3orx=2\)
\(b.x^2\left(2x+3\right)-8x-12=0\)
\(\text{⇔}x^2\left(2x+3\right)-4\left(2x+3\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\text{⇔}x=2;x=-2orx=-\dfrac{3}{2}\)
\(c.\left(2x-7\right)^2-\left(x-3\right)^2=0\)
\(\text{⇔}\left(2x-7-x+3\right)\left(2x-7+x-3\right)=0\)
\(\text{⇔}\left(x-4\right)\left(3x-10\right)=0\)
\(\text{⇔}x=4orx=\dfrac{10}{3}\)
\(d.\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\)
\(\text{⇔}\left(5x^2+3x-2-4x^2+3x+2\right)\left(5x^2+3x-2+4x^2-3x-2\right)=0\)
\(\text{⇔}\left(x^2+6x\right)\left(9x^2-4\right)=0\)
\(\text{⇔}x\left(x+6\right)\left(9x^2-4\right)=0\)
\(\text{⇔}x=0;x=-6orx=+-\dfrac{2}{3}\)
Còn lại tượng tự nha , dài quá ~
a) 2(x+3)=x(x+3)
2x+6=x^2+3x
2x-x^2-3x=6
x(2-x-3)=6
x(-1-x)=6 ( xong lập bang nhà)
\(x^2\left(2x-3\right)+12-8x=0\)
\(x^2\left(2x-3\right)-4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm2\end{cases}}\)
Vậy.....
x2.(2x-3) + 12-8x = 0
x2.(2x-3) + 4.(3-2x) = 0
x2.(2x-3) - 4.(2x-3) = 0
(2x-3).(x2 - 4) = 0
(2x-3).(x-2).(x+2) = 0
=> 2x-3 = 0 => 2x = 3 => x =3/2
x-2 = 0=> x = 2
x + 2 =0 => x = -2
KL:...