Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Sửa đề:
Cho $F(x)=ax^2+bx+c$.
CMR: $F(-2)F(3)\leq 0$ biết $13a+b+2c=0$
Lời giải:
Ta có:
$F(-2)=a.(-2)^2+b.(-2)+c=4a-2b+c$
$F(3) = a.3^2+3b+c=9a+3b+c$
$\Rightarrow F(-2)+F(3)=13a+b+2c=0$
$\Rightarrow F(-2)=-F(3)$
$\Rightarrow F(-2)F(3)=-F^2(3)\leq 0$
Ta có đpcm.
tam giác ABM và tam giác KBM có
BK=BA
BM là cạnh chung
BM là phân giác góc B = > góc ABM = góc KBM
=> tam giác ABM = tam giác KBM ( c.g.c)
a: Xét ΔABM và ΔKBM có
BA=BK
\(\widehat{ABM}=\widehat{KBM}\)
BM chung
Do đó: ΔABM=ΔKBM
b: Ta có: ΔABM=ΔKBM
nên \(\widehat{BAM}=\widehat{BKM}\)
hay \(\widehat{BKM}=90^0\)
Xét ΔAME vuông tại A và ΔKMC vuông tại K có
MA=MK
\(\widehat{AME}=\widehat{KMC}\)
Do đó: ΔAME=ΔKMC
Suy ra: ME=MC
121. \(A.\) \(a\perp b.\)
122. \(B.\) \(\widehat{A_1}=\widehat{B_2}.\)
Ta có :
\(\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(\left(x+2\right)^2=0\)
\(< =>x+2=0\)
\(< =>x=-2\)