K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

\(\left(x+2\right)^2+4x=\left(x+2\right)\left(4x-3\right)\Leftrightarrow x^2+4x+4+4x=4x^2+8x-3x-6\)

\(\Leftrightarrow3x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{129}}{6}\\x=\frac{3-\sqrt{129}}{6}\end{cases}}\)

17 tháng 7 2021

\(\left(x+2\right)^2+4x=\left(x+2\right)\left(4x-3\right)\)

\(x^2+4x+4+4x=4x^2+8x-3x-6\)

\(3x^2-3x-10=0\)

\(\Delta=\left(-3\right)^2-\left(4.3.-10\right)=129\)

\(\sqrt{\Delta}=\sqrt{129}\)

\(x_1=\frac{3+\sqrt{129}}{6}\)

\(x_2=\frac{3-\sqrt{129}}{6}\)

4 tháng 10 2021

ta có 4 x 3 y 2   –   8 x 2 y 3   =   4 x 2 y 2 . x   –   4 x 2 y 2 . 2 y   =   4 x 2 y 2 ( x   –   2 y )    

Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)      

Đáp án cần chọn là: C

bấm đúng cho mik đi 

28 tháng 10 2021

\(P=\dfrac{4xy^2-4x^2y+x^3}{4x^3-8x^2y}=\dfrac{x\left(x^2-4xy+4y^2\right)}{4x^2\left(x-2y\right)}=\dfrac{x-2y}{4x}\)

\(Q=\dfrac{2xy-x^2+x-2y}{4x-4x^2}=\dfrac{x\left(2y-x\right)-\left(2y-x\right)}{-4x\left(x-1\right)}=\dfrac{\left(2y-x\right)\left(x-1\right)}{-4x\left(x-1\right)}=\dfrac{x-2y}{4x}\)

Do đó: P=Q

7 tháng 12 2019

d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)

5 tháng 3 2022

\(\left(2x+1\right)^2=x^2\Leftrightarrow\left[{}\begin{matrix}2x+1=x\\2x+1=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

\(3x-4x^2+6-8x=x^2+4x+6\Leftrightarrow5x^2+9x=0\Leftrightarrow x=0;x=-\dfrac{9}{5}\)

đk : x khác 0 ; -1 

\(\Rightarrow x^2+3x+x^2-x-2=2x\left(x+1\right)\Leftrightarrow2x-2=2x\left(voli\right)\)

Vậy pt vô nghiệm 

\(a/\)

\(4x-4y+x^2-2xy+y^2\)

\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

\(b/\)

\(x^4-4x^3-8x^2+8x\)

\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)

\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x-4\right)\)

\(d/\)

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)

\(e/\)(Xem lại đề)

\(x^4+x^3+x^2+2x+1\)

\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^3+x+1\right)\)

\(f/\)

\(x^3-4x^2+4x-1\)

\(=x\left(x^2-4x+4\right)-1^2\)

\(=x\left(x-2\right)^2-1\)

\(=[\sqrt{x}\left(x-2\right)]^2-1\)

\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)

\(c/\)

\(x^3+x^2-4x-4\)

\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)

\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

d) đề là gì bn

(2x+3)(4x2−6x+9)−2(4x3−1)

(4x1)3(4x3)(16x2+3)(4x−1)3−(4x−3)(16x2+3)

=64x348x2+12x1(64x3+12x48x29)=64x3−48x2+12x−1−(64x3+12x−48x2−9)

=64x348x2+12x164x312x+48x2+9=64x3−48x2+12x−1−64x3−12x+48x2+9

=8

29 tháng 2 2020

đề không rõ nên mình làm như này:

c) \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\)

d) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\)

29 tháng 2 2020

\(c, C=x(2x+1)-x^2(x+2)+x^3-x+3\)

\(C=2x^2+x-x^3-2x^2+x^3-x+3\)

\(C=3\)

\(d, (2x+3)(4x^2-6x+9)-2(4x^3-1)\)

\(=(8x^3+27)-2(4x^3-1)\)

\(=8x^3+27-8x^3+2\)\(=29\)

\(e, (4x-1)^3-(4x-3)(16x^2+3)\)

\(=(64x^3-48x^2+12x-1)-(64x^3+12x-48x^2-9)\)

\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)

\(=8\)

\(f, (x+1)^3-(x-1)^3-6(x+1)(x-1)\)

\(=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-1)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=8\)

31 tháng 10 2021

\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

31 tháng 10 2021

a.

4x(x-5) - (x-1)(4x-3)-5=0

 4x^2-20x-4x^2+3x+4x+3=0

(4x^2-4x^2)+(-20x+3x+4x)+3=0

 13x+3 = 0

13x=-3

x=-3/13

b,

(3x-4)(x-2)-3x(x-9)+3=0

3x^2-6x-4x+8 - 3x^2+27x+3=0

(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0

17x+11=0

17x=-11

x=-11/17

c, 2(x+3)-x^2-3x=0

2(x+3) - x(x+3)=0

(x+3)(2-x)=0

TH1: x+3 = 0; x=-3

TH2: 2-x=0;x=2

 

 

13 tháng 7 2018

a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)

b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)

c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)

13 tháng 7 2018

a) \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=\left(x^2+x\right)+\left(3x+3\right)\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

c) \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)