Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: 3x^2+15/-6>=0
=>3x^2+15<=0(vô lý)
b: ĐKXĐ: -81/-x^2-12>=0
=>-x^2-12<0
=>-x^2<12
=>x^2>-12(luôn đúng)
c: ĐKXĐ: 31(x^2+21)/3>=0
=>x^2+21>=0(luôn đúng)
d: ĐKXĐ: -12/x^2+11>=0
=>x^2+11<0(vô lý)
e: ĐKXĐ: 21/-x^2-17>=0
=>-x^2-17>0
=>x^2+17<0(vô lý)
1:
a: ĐKXĐ: 1-x>=0
=>x<=1
b: ĐKXĐ: 2/x>=0
=>x>0
c: ĐKXĐ: 4/x+1>=0
=>x+1>0
=>x>-1
d: ĐKXĐ: x^2+2>=0
=>x thuộc R
Câu 2:
a: \(=\left|-\sqrt{2-1}\right|=\sqrt{1}=1\)
b: \(=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
ĐKXĐ: \(x\ge-\dfrac{5}{2}\)
\(\sqrt{2x+5}+\sqrt{x+7}+x-8=0\\ \Leftrightarrow\left(\sqrt{2x+5}-3\right)+\left(\sqrt{x+7}-3\right)+x-2=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}+\dfrac{x-2}{\sqrt{x+7}+3}+x-2=0\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\sqrt{2x+5}+3}+\dfrac{x-2}{\sqrt{x+7}+3}+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}+\dfrac{1}{\sqrt{x+7}+3}+1\right)=0\)
Vì \(\dfrac{2}{\sqrt{2x+5}+3}>0;\dfrac{1}{\sqrt{x+7}+3}>0;1>0\Rightarrow\dfrac{2}{\sqrt{2x+5}+3}+\dfrac{1}{\sqrt{x+7}+3}+1>0\)
\(\Rightarrow x-2=0\\ \Rightarrow x=2\left(tm\right)\)
Vậy \(x=2\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)
3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)
\(\sqrt{x}=\sqrt{21+8\sqrt{5}}\)
\(\sqrt{x}=\sqrt{4^2+8\sqrt{5}+\sqrt{5}^2}\)
\(\sqrt{x}=\sqrt{\left(4+\sqrt{5}\right)^2}\)
\(\sqrt{x}=\left|4+\sqrt{5}\right|\)
\(\sqrt{x}=4+\sqrt{5}\)