K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

17 tháng 2 2018

Xét VT của (1):

\(3VT\)

\(=\sqrt{5x^2+2xy+2y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{2x^2+2xy+5y^2}.\sqrt{2^2+2^2+1^2}\)

\(=\sqrt{\left(x+y\right)^2+4x^2+y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{\left(x+y\right)^2+x^2+4y^2}.\sqrt{2^2+2^2+1^2}\)

\(\ge\left[2\left(x+y\right)+4x+y\right]+\left[2\left(x+y\right)+x+4y\right]=9x+9y\)

\(\Rightarrow VT\ge3x+3y=VT\)

Đẳng thức xảy ra \(\Leftrightarrow...\Leftrightarrow x=y\)

Sau đó thay \(y=x\) vào pt (2) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left(2x^2-\sqrt{3x+1}\right)+\left(x-5-2\sqrt[3]{19x+8}\right)=0\)

\(\Leftrightarrow\dfrac{4x^2-3x-1}{2x^2+\sqrt{3x+1}}+\dfrac{\left(x+5\right)^3-8\left(19x+8\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4x+1\right)}{2x^2+\sqrt{3x+1}}+\dfrac{ \left(x-1\right)\left(x^2+16x-61\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{4x+1}{2x^2+\sqrt{3x+1}}+\dfrac{x^2+16x-61}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}\right]=0\)

\(\Leftrightarrow x=1\Rightarrow y=1\)

AH
Akai Haruma
Giáo viên
5 tháng 12 2017

Lời giải:

\(x^3+6x^2+12x+6=3\sqrt[3]{3x+8}\)

\(\Leftrightarrow x^3+6x^2+12x=3(\sqrt[3]{3x+8}-2)\)

\(\Leftrightarrow x(x^2+6x+12)=\frac{3.3x}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}\)

\(\Leftrightarrow x\left[(x^2+6x+12)-\frac{9}{\sqrt[3]{(3x+8)^2+2\sqrt[3]{3x+8}+4}}\right]=0\)

TH1: \(x=0\) (thỏa mãn)
TH2: Biểu thức trong ngoặc vuông bằng 0

Ta thấy \(x^2+6x+12=(x+3)^2+3\geq 3\forall x\in\mathbb{R}\) (1)

\(\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4=(\sqrt[3]{3x+8}+1)^2+3\geq 3\)

\(\Rightarrow \frac{9}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}\leq 3\) (2)

Từ (1), (2) suy ra \(x^2+6x+12-\frac{9}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}\geq 0\)

Dấu bằng xảy ra khi \(x^2+6x+12=\frac{9}{\sqrt[3]{(3x+8)^2}+2\sqrt[3]{3x+8}+4}=3\Leftrightarrow \left\{\begin{matrix} (x+3)^2=0\\ (\sqrt[3]{3x+8}+1)^2=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=-3\\ x=-3\end{matrix}\right.\) (thỏa mãn)

Vậy \(x\in\left\{-3;0\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 12 2017

Minh Hiếu Tô : Đó là phép liên hợp

\((a-b)(a^2+ab+b^2)=a^3-b^3\Rightarrow a-b=\frac{a^3-b^3}{a^2+ab+b^2}\)

Ở đây \(a=\sqrt[3]{3x+8}; b=2\)

Còn bài trên kia bạn đăng hẳn bài riêng lên hộ mình nhé.

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

NV
24 tháng 12 2020

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)