K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

<=> (x+2019x)-(2020x+2019.2020)=0
<=> x.(x+2019)-2020.(x+2019)=0
<=>(x-2020).(x+2019)=0
câu kia tương tự

3 tháng 1 2018

\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)

\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)

\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)

\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)

\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)

Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)

\(\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\)

Vậy ..

3 tháng 1 2018

=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)

=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018

=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0

=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0

=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )

=> x=-2017

Vậy x=-2017

k mk nha

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

28 tháng 3 2020

có làm mới có ăn hỏi cc

28 tháng 3 2020

Bình làm chưa????

29 tháng 9 2019

a) Ta có:A=|x-2019| +|x-1|
 =|2019-x| +|x-1|
 ≥|2019-x+x-1|=|2018|=2018
Dấu "=" xảy ra <=> (2019-x)(x-1) ≥0 <=> 1≤x≤2019
b)Ta có:1+x2 ≥0 với mọi x
=> |1+x2| = 1+x2
Do đó: B=|1+x2|+2019 =x2+2020 ≥2020
Dấu "=" xảy ra <=> x=0
Nhớ k mik nha :))))

29 tháng 9 2019

A thì kẻ bảng

B=/1+x^2/+2019

      /1+x^2/> hoặc = 0

        /1+x^2/+2019> hoặc =2019

   hay             B> hoặc =2019    

do đó GTNN B=2019                       

     

5 tháng 1 2020

\(x=2019\)\(\Rightarrow x+1=2020\)

\(\Rightarrow B=x^{2019}-\left(x+1\right).x^{2018}+........-\left(x+1\right).x^2+\left(x+1\right).x+1\)

        \(=x^{2019}-x^{2019}+x^{2018}+.......-x^3-x^2+x^2+x+1\)

        \(=x+1=2020\)

Vậy tại \(x=2019\)thì \(B=2020\)

5 tháng 1 2020

Ta có x=2019

   => x + 1=2020

thay x+1 vào B, ta có:

\(A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-...+\left(x+1\right)x-1\)

=> \(A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-...+x^2+x-1\)

=> \(A=x-1=2020-1=2019\)