Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,2\cdot4\right)^5}{\left(0,2\cdot2\right)^6}=\frac{\left(0,2\right)^5\cdot\left(2^2\right)^5}{\left(0,2\right)^6\cdot2^6}=\frac{\left(0,2\right)^5\cdot2^{10}}{\left(0,2\right)^6\cdot2^6}=\frac{2^4}{0,2}=\frac{16}{\frac{2}{10}}=80\)
b)\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=256\)
Bài 2:
a)\(2^{x-1}=16\)
\(\Rightarrow2^{x-1}=2^4\)
\(\Rightarrow x-1=4\Rightarrow x=5\)
b)\(\left(x-1\right)^2=25\)
\(\Rightarrow\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow x=6\) hoặc \(x=-4\)
Vậy \(x=6\) hoặc \(x=-4\)
c)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\1=\left(x-1\right)^4\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\\left(x-1\right)^4=\left(-1\right)^4=1^4\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x-1=1\\x-1=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=0\end{array}\right.\)
d)\(\left(x+20\right)^{100}+\left|y+4\right|=0\left(1\right)\)
Ta thấy: \(\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+20=0\\y+4=0\end{cases}\)\(\Rightarrow\begin{cases}x=-20\\y=-4\end{cases}\)
(x+20)100 + |y+4| = 0
Xet thay: (x+20)100 lon hon hoac bang 0 ( vi co so mu chan)
| y+4| lon hon hoac bang 0
Ma: (x+20)100 + |y+4| = 0
=> (x+20)100 = 0 => x = -20
=> |y+4| = 0 => y = -4
Vay: x=-20 ; y=-4
Vì \(\left(x+20\right)^{100}\ge0;\left|y+4\right|\ge0\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+20=0\\y+4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-20\\y=-4\end{cases}}}\)
Vậy x = - 20; y = - 4
Ta có: (x+20)100 >= 0 với mọi x thuộc Z
Iy+4I >=0 với mọi x thuộc Z
Mà (x+20)100+Iy+4I=0
=> (x+20)100=0 và Iy+4I=0
<=> x+20=0 và y+4=0
<=> x=-20 và y=-4
Ta có: \(\left(x-5\right)^4+\left|y^2-4\right|=0\) \(\left(1\right)\)
Lại có: \(\hept{\begin{cases}\left(x-5\right)^4\ge0\\\left|y^2-4\right|\ge0\end{cases}}\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}\left(x-5\right)^4=0\\\left|y^2-4\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-5=0\\y^2-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y^2=4\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=2;y=-2\end{cases}}}\)
(x+20)100+|y+4|=0
\(\Rightarrow\orbr{\begin{cases}x+20=0\\y+4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy x=-20;y=-4
giúp mình với
Vì ( x + 20 )^100 luôn lớn hơn hoặc bằng 0 với mọi x
/ y +4/ luôn lớn hơn hoặc bằng 0 với mọi y
Mà ( x+20 )^100+ /y+4/ =0
Dấu bằng xảy ra khi:
x+ 20=0 suy ra x=-20
y+4=0 suy ra y=-4
Vậy x=-20; y=-4 thì ( x+20 )^100 + / y+4 / =0