Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+20)100 \(\ge0\forall x\)
|y+4| \(\ge0\forall y\)
Mà \(\left(x+20\right)^{100}+\left|y+4\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+20=0\\y+4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-20\\y=-4\end{cases}}}\)
(x+20)+|y+4|=0
\(\Rightarrow\orbr{\begin{cases}x+20\\y+4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy x=-20;y=-4
\(\left(x:y\right)^2=\left(\frac{4}{3}\right)^2\)
\(=>x:y=\frac{4}{3}=>\frac{x}{y}=\frac{4}{3}\)
---> x : y = 4/3
---> 3x = 4y
lại có x^2 + y^2 = 100
---> ( 3x )^2 + ( 3y )^2 = 900
---> ( 4y )^2 + ( 3y )^2 = 900
---> 16y^2 + 9y^2 = 900
---> 25y^2 = 900
---> y^2 = 36
---> y = 6
---> x = 8
có gì ib riêng mình nhé
Có: \(\left(x-2\right)^{2018}+\left|y^2-9\right|^{2017}=0\)
Suy ra: \(\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-2=0\\\left|y^2-9=0\right|\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)
chưa chắc đã đúng đâu Nguyệt Phượng nhé
trường hợp của bạn chỉ dùng khi biểu thức trên là:(x-2)^2018* |y^2-9|^ 2017=0 thôi bạn nhé
a) Vì \(\hept{\begin{cases}\left|5-4x\right|\ge0\\\left|7y-3\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 5/4 ; y = 3/7
b) Vì \(\hept{\begin{cases}\left|x-3y-1\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 13 ; y = 4
a)do |5-4x|+|7y-3|=0,mà|5-4x| và|7y-3| đều lớn hơn hoặc = 0
suy ra 5-4x=7y-3=0 thì biểu thức mới thỏa mãn
(do mọi số trong dấu GTTĐ đều lớn hơn hoặc bằng 0)
tự giải nốt nhé
a) ta có \(x^{20}=x^{10}< =>x^{20}-x^{10}=0\)
<=> \(x^{10}\left(x^{10}-1\right)=0\)
<=>\(\orbr{\begin{cases}x^{10}=0\\x^{10}=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=+-1\end{cases}}\)
b) ta có \(\left(x-2\right)^{2018}>=0\)
\(\left(y-1\right)^{2020}>=0\)
=> \(\left(x-2\right)^{2018}+\left(y-1\right)^{2020}>=0\)
dấu = xảy ra <=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
*\(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left[\frac{1}{14}+\frac{1}{7}-\left(-\frac{3}{35}\right)\right].\frac{4}{3}}=\frac{\left(\frac{18}{60}-\frac{16}{60}-\frac{21}{60}\right).\frac{5}{19}}{\left(\frac{5}{70}+\frac{10}{70}+\frac{6}{70}\right).\frac{4}{3}}=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{4}{3}}=\frac{\frac{-1}{12}}{\frac{14}{35}}=-\frac{1}{12}.\frac{35}{14}=\frac{-35}{168}\)
*\(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(\frac{63}{10}.12-21.\frac{18}{5}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(\frac{378}{5}-\frac{378}{5}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
(x+20)100+|y+4|=0
\(\Rightarrow\orbr{\begin{cases}x+20=0\\y+4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy x=-20;y=-4