Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 2: a) \(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
vi 810 <910 nen 230 <320
b) \(5^{202}=\left(5^2\right)^{101}=25^{101}\)
\(2^{505}=\left(2^5\right)^{101}=32^{101}\)
vi 25101 <32101 nen 5202 <2505
c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
vi 81111>64111 va 111444>111333
nen 333444>444333
bai 3 : \(\left(\frac{1}{3}\right)^{2n-1}=3^5\)
\(\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^{-5}\)
2n-1=-5
2n=-5+1
2n=-4
n=-4:2
n=-2
Bai 4 : 3x-5/9=0 va 3y+0,4/3=0
3x=5/9 va 3y=2/15
x=5/27 va y=2/45
Bai 5:
A=75. {42002.(42+1)+....+(42+1)+1)+25
A=75.{42002.20+...+20+1}+25
A=75.{20.(42002+...+1)+1}+25
A=75.20.(42002+..+1)+75+25
A=1500.(42002+...+1)+100
A=100.{15.(42002+...+1)+1} chia het cho 100
a) Ta thấy:
\(\left(x-3\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Để \(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+3\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}x-3=0\\y+3=0\end{cases}\)
\(\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\)
Vậy \(\begin{cases}x=3\\y=-3\end{cases}\)
c) Ta thấy:
\(\left(x-12+y\right)^{200}\ge0\)
\(\left(x-4-y\right)^{200}\ge0\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\ge0\)
Để \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)
\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)
\(\Rightarrow\begin{cases}x=\left(12+4\right):2\\y=\left(12-4\right):2\end{cases}\)
\(\Rightarrow\begin{cases}x=8\\y=4\end{cases}\)
Vậy \(\begin{cases}x=8\\y=4\end{cases}\)
ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)
Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0
=> (2x-5)2000+(3y+4)2002=0
=>2x-5=0 => x=2,5
=>3y+4=0=>y=\(\frac{-4}{3}\)
Vì (2x-5)2000 > 0 với mọi x
(3y+4)2002 > 0 với mọi y
=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y
Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=(3y+4)2002=0
+)(2x-5)2000=0=>2x-5=0=>x=5/2
+)(3y+4)2002=0=>3y+4=0=>y=-4/3
Vậy x=5/2;y=-4/3
vì [2x-70]^2001 và [3y+10]^2012 luôn dương nên để [2s-70]^2001 + [3y+10]^2012 =0 thì [2x-70]^2001 và [3y+10]^2012 phải bằng 0
=>2x-70=0=>x=35=>[x]=35
=>3y+10=0=>y-10/3=>[y]=10/3
Ta có: 220 = (210)2 = 10242 = ....(76)
* Lũy thừa những số tận cùng là 76 thì tận cùng là 76
+ có : 22000 = (220)100 = (....76)100 = ...76
+có: 22001 = 2\(\times2^{2000}\) = 2 \(\times\)( ....76) = (.....52)
+ có: 22002 = 4 \(\times\) 22000 = 4 \(\times\) (...76) = ( ....04)
\(\Rightarrow\) A có 2 chữ số tận cùng là ( 76+52+04) = 132 . Vậy A có tận cùng là 32
có |x+201|^2001 > hoặc =0 với mọi x ( giá trj tuyệt đối)
(y-202)^2002 > hoặc = 0 với mọi y ( luỹ thừa bậc chẵn)
Suy ra |x+201|^2001 + (y-202)^2002 > hoặc = 0 với mọi x;y
Theo bài ra thì : |x+201|^2001 + (y-202)^2002 = 0
nên |x+201|^2001 + (y-202)^2002 = 0
<=> |x+201|^2001 = 0 <=> x+201=0 <=> x=-201
<=> (y-202)^2002 = 0 <=> y-202=0 <=> y=202
vậy (x;y) = (-201;202)
tick nha !! very