Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{6}=\dfrac{y}{9}\left(1\right)\)
Ta có: \(\dfrac{x}{3}=\dfrac{z}{5}\)
nên \(\dfrac{x}{6}=\dfrac{z}{10}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\)
Đặt \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=9k\\z=10k\end{matrix}\right.\)
Ta có: \(x^2+y^2+z^2=21\)
\(\Leftrightarrow k^2=\dfrac{21}{217}\)
Trường hợp 1: \(k=\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{6\sqrt{93}}{31}\\y=9k=\dfrac{9\sqrt{93}}{31}\\z=10k=\dfrac{10\sqrt{93}}{31}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{-6\sqrt{93}}{31}\\y=9k=\dfrac{-9\sqrt{93}}{31}\\z=10k=\dfrac{-10\sqrt{93}}{31}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{217}=\dfrac{21}{217}=\dfrac{3}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{31}\cdot6=\dfrac{18}{31}\\y=\dfrac{3}{31}\cdot9=\dfrac{27}{31}\\z=\dfrac{3}{31}\cdot10=\dfrac{30}{31}\end{matrix}\right.\)
Lời giải:
Theo bài ra ta có:
$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$
$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$
Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$
$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:
$3x^2-y^2+z^2=876$
$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$
$\Rightarrow 219k^2=876$
$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$
Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$
Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$
Hhigh
sửa đề : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
áp dụng t/c dãy t/s = nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{58}{3+4+5}=\frac{58}{12}=\frac{29}{6}\)
\(\frac{x}{3}=\frac{29}{6}\Rightarrow x=\frac{29}{2}\)
\(\frac{y}{4}=\frac{29}{6}\Rightarrow y=\frac{58}{3}\)
\(\frac{z}{5}=\frac{29}{6}\Rightarrow z=\frac{145}{6}\)
vậy ...
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+y^2+z^2}{4+9+16}=\dfrac{116}{29}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.4=16\\y^2=4.9=36\\z^2=16.16=16^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=6\\z=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-4\\y=-6\\z=-16\end{matrix}\right.\end{matrix}\right.\)
thank bn nha!