K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2021

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

26 tháng 6 2021

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

7 tháng 12 2019

d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)

28 tháng 6 2021

\(a)\)

\(\left(x^2+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{x^3+y}{x}:\frac{x^2-xy+y^2}{xy^2}\)

\(\Rightarrow\frac{x^3+y}{1}-\frac{y^2}{x^2-xy+y^2}\)

\(\Rightarrow\frac{x^3y^2+y^3}{x^2-xy+y^2}\)

7 tháng 4 2020

Ty nhi ha

1 tháng 8 2018

Bài 1:

a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)

\(\Rightarrow4\left(x-2\right)-3x+4=0\)

\(\Rightarrow4x-8-3x+4=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)

\(\Rightarrow10x+35-15x-6=25\)

\(\Rightarrow-5x+29=25\)

\(\Rightarrow-5x=25-29\)

\(\Rightarrow-5x=-4\)

\(\Rightarrow x=\dfrac{4}{5}\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Rightarrow-x-21=0\)

\(\Rightarrow x=-21\)

Bài 2:

a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(P=8x^2y-6y^2-9x^2y+12y^2\)

\(P=-x^2y+6y^2\)

Thay x = -1 ; y = 2 vào P ta được

\(P=-\left(-1\right)^2.2+6.2^2\)

\(P=-2+24=22\)

b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(Q=20x^3-12x^2y-4x^3-x^2y\)

\(Q=16x^3-13x^2y\)

Thay x = -1 ; y = 2 vào Q ta được

\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)

\(Q=-16-26\)

\(Q=-42\)

c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)

\(H=2xy\)

Thay x = 1/4 ; y = 2012 vào H ta được

\(H=2.\dfrac{1}{4}.2012\)

\(H=1006\)

1 tháng 8 2018

1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Leftrightarrow8x-16-6x+8=2\)

\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)

b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Leftrightarrow30x-20-15x-6+55-20x=25\)

\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)

\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)

2.

a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)

\(\Leftrightarrow x^2y-18y^2\)

tại x=-1 , y=2

ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)

vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2

b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)

\(\Leftrightarrow17x^3-13x^2y\)

tại x=-1,y=2

ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)

vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)

c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)

\(\Leftrightarrow x^4+2xy-x^3\)

tại x=1/4 và y=2012

ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)

13 tháng 10 2017

a. 3(x - y)2 - 2(x + y)2 - (x - y)(x + y)

= 3(x2 - 2xy + y2) - 2(x2 + 2xy + y2) - (x2 - y2)

= 3x2 - 6xy + 3y2 - 2x2 - 4xy - 2y2 - x2 + y2

= - 10xy + 2y2

b. 2(2x + 5)2 - 3(4x + 1)(1 - 4x)

= 2(4x2 + 20x + 25) - 3(1 + 4x)(1 - 4x)

= 8x2 + 40x + 50 - 3(1 - 16x2)

= 8x2 + 40x + 50 - 3 + 48x2

= 56x2 + 40x + 47

pn coi kt lại nhé

15 tháng 10 2017

Ở câu a, hàng thứ ba gần cuối phần...-x2+y2 hình như sai kìa bạn ơi phải là x2-y2 chớ