K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Đặt x2 = a (a >= 0) , y2 = b (b >= 0)

Ta có : (a + b)/10 = (a - 2b)/7 và a2b2 = 81

            (a + b)/10 = (a - 2b)/7 = [(a + b) - (a - 2b)]/10 - 7 = 3b/3 = b                  (1)

            (a + b)/10 = (a - 2b)/7 = (2a + 2b)/20 = [(2a + 2b) + (a - 2b)]/(20 + 7) = 3a/27 = a/9          (2)

Từ (1) và (2) => a/9 = b => a = 9b

Do a2b2 = 81 nên (9b)2 . b2 = 81 => 81b4 = 81 => b4 = 1 => b = 1 (vì b >= 0)

Suy ra : a = 9.1 = 9

Ta có : x2 = 9 => x = 3 hoặc x = -3

            y2 = 1 => y = 1 hoặc y = -1

Vậy : ...

P/S : Do bấm công thức Toán nó bị lỗi nên thông cảm

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)

Vậy ....

20 tháng 12 2016

\(\frac{x}{3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{x}{14}\left(1\right);\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{35}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{14}=\frac{z}{35}\)=>\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}=\frac{2x^2+3y^2-z^2}{72+588-1225}=\frac{-2260}{-565}=4\)

hay \(\frac{x^2}{36}=4\Leftrightarrow x^2=144\Leftrightarrow x=\pm12\)

      \(\frac{y^2}{196}=4\Leftrightarrow y^2=784\Leftrightarrow y=\pm28\)

      \(\frac{z^2}{1225}=4\Leftrightarrow z^2=\Leftrightarrow z=\pm70\)

+)Với x=-12 thì y=-28 và z=-70

+)Với x=12 thì y=28 và z=70

Vậy ...................

20 tháng 12 2016

lúc nãy viết thiếu, chỗ z2=4900 nhé :)

28 tháng 10 2021

Đề thiếu rồi bạn

14 tháng 11 2021

à dạ vâng ạ em xin lũi rep lại hơi trễ ạ 

2 tháng 12 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x\cdot y}{2\cdot3}=\dfrac{96}{6}=16\)

\(\Rightarrow\left\{{}\begin{matrix}x=32\\x=48\end{matrix}\right.\)

2 tháng 12 2021

Tham khảo!

1 tháng 1 2019

ko làm đc ư 
v~ cả con cô

1 tháng 1 2019

Tạo câu hỏi cho vui hà !

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)