K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

x2 - x + y2 - y = x . x - x + y . y - y

= 2x + 2y

= 2(x + y)

\(x^2-x+y^2-y\)

\(=x.x-x+y.y-y\)

\(=2x+2y\)

\(2\left(x+y\right)\)

3 tháng 8 2016

\(=\left(x-x\right)^2+\left(y-y\right)^2=0^2+0^2=1+1=2\)

\(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

\(x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-4z^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay ............... :

 \(\left(\left(-4\right)-y-2.45\right)\left(\left(-4\right)-y+2.45\right)\)

\(=\left(-y-49\right)\left(86-y\right)\)

3 tháng 8 2016

????????

6 tháng 11 2019

b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath

2 tháng 8 2019

Mọi người giúp em thêm bài 5abc, 8c với ạ!

12 tháng 12 2016

a.(x- x2 -7x + 3 ) : x -3 = x+ 2x - 1

b.( 2x- 3x2 - 3x3 - 2 + 6x ) : ( x- 2 ) = 2x- 3x + 1

Nhớ k cho mik nha bạn!

12 tháng 12 2016

bạn giải cụ thể y mk k cho

19 tháng 11 2016

a) x2 -  2xy + y2  + 1 = (x-y)2 + 1 \(\ge\)1  

=> (x-y)2 +1 >0  =>  x2 - 2xy + y2  >0 

b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2\(\frac{3}{4}\)< 0   => x -  x2  - 1 <0

7 tháng 7 2020

a) Ta có:

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

.\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)

\(\Rightarrow x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)

b) Ta có :

\(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

Ta có :

\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x

\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )

(x2+xy+y2) +2

\(\Rightarrow\)(x+y)2+2\(\ge\)2

Vậy  : x2 + y2 + xy + 2 > 0 với mọi số thực x,y

9 tháng 12 2017

x2+y2+xy+2>0

<=>2x2+2y2+2xy+2>0

<=>(x2+2xy+y2)+x2+y2+2>0

<=>(x+y)2+x2+y2+2>0(đúng vì (x+y)2+x2+y2>=0 với mọi x;y)