Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
Nếu bạn không có đáp án cho CH hoặc là không biết cách giải thì ĐỪNG bình luận những câu vô nghĩa vào CH.
c) \(\left(x+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2}{x}+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2+y}{x}\right)^3\)
\(=\dfrac{x^6+3x^4y+3x^2y^3+y^3}{x^3}\)
f) \(\left(x-\dfrac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3\)
\(=x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}\)
h) \(\left(x+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x}{2}+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x+y^2}{2}\right)^3\)
\(=\dfrac{8x^3+12x^2y^2+6xy^4+y^6}{8}\)
k) \(\left(x-\dfrac{1}{3}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=x^3-x^2+\dfrac{x}{3}-\dfrac{1}{27}\)
m) \(\left(x+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x}{3}+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x+y^2}{3}\right)^3\)
\(=\dfrac{27x^3+27x^2y^2+9xy^4+y^6}{27}\)
Q) \(2\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)
\(=2\left(2x^4-x^2y+x^2y-\dfrac{1}{2}y^2\right)\)
\(=2\left(2x^4-\dfrac{1}{2}y^2\right)\)
\(=4x^4-y^2\)
\(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
x2 - x + y2 - y = x . x - x + y . y - y
= 2x + 2y
= 2(x + y)
\(x^2-x+y^2-y\)
\(=x.x-x+y.y-y\)
\(=2x+2y\)
\(2\left(x+y\right)\)