Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x3-6x2+9x=x(x2-6x+9)=x(x-3)2
b)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)
c)x2-x+xy-y=x(x-1)+y(x-1)=(x-1)(x+y)
d)3x2-6xy-75+3y2=3[(x2-2xy+y2)-25]=3[(x-y)2-52]=3(x-y-5)(x-y+5)
e)2x2-5x-7=(2x2+2x)-(7x+7)=2x(x+1)-7(x+1)=(x+1)(2x-7)
f)x4+36=x4+12x2+36-12x2=(x2+6)2-12x2=(x2-\(\sqrt{12}x\)+6)(x2+\(\sqrt{12}x\)+6)
h)x4+4y4=x4+4x2y2+4y2-4x2y2=(x2+2y2)-4x2y2=(x2+2y2-2xy)(x2+2y2+2xy)
a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)
\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)
\(=5\cdot\left(1-2xy^2\right)\)
\(=5-10xy^2\)
b) Ta có: \(9x^2-\left(3x-4\right)^2\)
\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)
\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)
\(=4\cdot\left(6x-4\right)\)
\(=24x-16\)
c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)
\(=a^2-b^4\)
d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
\(=a^4+4a^3+4a^2-9\)
e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)
\(=x^2-y^2+12y-36\)
f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)
g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(=\left(2y\right)^3-5^3\)
\(=8y^3-125\)
h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)
\(=\left(3y\right)^3+4^3\)
\(=27y^3+64\)
i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=\left(x-3\right)^3-\left(x-2\right)^3\)
\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)
\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)
\(=-3x^2+15x-19\)
j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\cdot\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
\(A=x^2-xy+\frac{y^2}{4}+\frac{3}{4}\left(y^2-4y+4\right)+2013\)
\(=\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y-2\right)^2+2013\ge2013\)
\(B\) đề thiếu
\(C\) đề sai, dấu của \(y^2\) là âm thì không tồn tại GTNN
\(P=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
\(2Q=-4x^2-20y^2+12xy+8x-6y+4\)
\(=-\left(4x^2+9y^2+4-12xy-8x+12y\right)-11\left(y^2-\frac{6}{11}y+\frac{36}{121}\right)+\frac{97}{11}\)
\(=-\left(2x-3y-2\right)^2-11\left(y-\frac{3}{11}\right)^2+\frac{97}{11}\le\frac{97}{11}\)
\(\Rightarrow Q\le\frac{97}{22}\)
a) Ta có: 10(x-y)-8y(y-x)
\(=10\left(x-y\right)+8y\left(x-y\right)\)
\(=2\left(x-y\right)\left(5+4y\right)\)
d) Ta có: \(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-9\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
e) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
f) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
g) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
h) Ta có: \(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
a)(x2+xy)2-(y2+xy)2=(x2+2xy+y2)(x2-y2)
=(x+y)2(x+y)(x-y)
=(x+y)3(x-y)
b)25(x-y)2-16(x+y)2=(5x-5y)2-(4x+4y)2=(9x-y)(x-9y)
a. \(\left(x^2+xy\right)^2-\left(y^2+xy\right)^2\)
\(=\left(x^2+2xy+y^2\right).\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2.\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right)^3\left(x-y\right)\)