K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

a)x3-6x2+9x=x(x2-6x+9)=x(x-3)2

b)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)

c)x2-x+xy-y=x(x-1)+y(x-1)=(x-1)(x+y)

d)3x2-6xy-75+3y2=3[(x2-2xy+y2)-25]=3[(x-y)2-52]=3(x-y-5)(x-y+5)

e)2x2-5x-7=(2x2+2x)-(7x+7)=2x(x+1)-7(x+1)=(x+1)(2x-7)

f)x4+36=x4+12x2+36-12x2=(x2+6)2-12x2=(x2-\(\sqrt{12}x\)+6)(x2+\(\sqrt{12}x\)+6)

h)x4+4y4=x4+4x2y2+4y2-4x2y2=(x2+2y2)-4x2y2=(x2+2y2-2xy)(x2+2y2+2xy)

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

NV
30 tháng 10 2019

\(A=x^2-xy+\frac{y^2}{4}+\frac{3}{4}\left(y^2-4y+4\right)+2013\)

\(=\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y-2\right)^2+2013\ge2013\)

\(B\) đề thiếu

\(C\) đề sai, dấu của \(y^2\) là âm thì không tồn tại GTNN

\(P=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

\(2Q=-4x^2-20y^2+12xy+8x-6y+4\)

\(=-\left(4x^2+9y^2+4-12xy-8x+12y\right)-11\left(y^2-\frac{6}{11}y+\frac{36}{121}\right)+\frac{97}{11}\)

\(=-\left(2x-3y-2\right)^2-11\left(y-\frac{3}{11}\right)^2+\frac{97}{11}\le\frac{97}{11}\)

\(\Rightarrow Q\le\frac{97}{22}\)

18 tháng 8 2020

cảm ơn bạn nha

a) Ta có: 10(x-y)-8y(y-x)

\(=10\left(x-y\right)+8y\left(x-y\right)\)

\(=2\left(x-y\right)\left(5+4y\right)\)

d) Ta có: \(x^2y-x^3-9y+9x\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(y-x\right)\left(x^2-9\right)\)

\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)

e) Ta có: \(2x+2y-x^2-xy\)

\(=2\left(x+y\right)-x\left(x+y\right)\)

\(=\left(x+y\right)\left(2-x\right)\)

f) Ta có: \(x^2-25+y^2+2xy\)

\(=\left(x+y\right)^2-5^2\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

g) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

h) Ta có: \(x^2\left(x-1\right)+16\left(1-x\right)\)

\(=x^2\left(x-1\right)-16\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-16\right)\)

\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)

22 tháng 10 2017
 

Phân tích đa thức thành nhân tử :
a, (x2+y2-5)- 4(xy+2)2
b, x2-6x-4y2+12y
c, 9x2-4-y2+4y
d, x2-y24z2-4yz - 10x + 25

Hi hi không biết làm!!!

 
22 tháng 10 2017

Câu a sau 4(xy+2) là ^2 nhé mình nhầm TOT

15 tháng 8 2019

a)(x2+xy)2-(y2+xy)2=(x2+2xy+y2)(x2-y2)

=(x+y)2(x+y)(x-y)

=(x+y)3(x-y)

b)25(x-y)2-16(x+y)2=(5x-5y)2-(4x+4y)2=(9x-y)(x-9y)

a. \(\left(x^2+xy\right)^2-\left(y^2+xy\right)^2\)

\(=\left(x^2+2xy+y^2\right).\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2.\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right)^3\left(x-y\right)\)